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1 PREFACE 
 
The objective of this document is to provide detailed information on the operation of the various 
CRTC 6845 circuits implemented in the CPC’s created by AMSTRAD. The CRTC is a controller 
circuit capable of providing an interface between microcomputers and cathode ray screens that 
manage video scanning. 
 
The document also discusses the operation of some circuits associated with the CRTC’s, especially 
the GATE ARRAY. 
  
Game or demo programmers still working on these machines designed in the 1980s and the 1990s 
may find the information presented here useful. 
It can also serve as a reference for anyone wishing to create an emulator by adapting code ad hoc 
for specific programs. 
 
Finally, this document may provide useful information to users of other machines equipped with 
similar CRTC’s. However, it must be noted that the timing between the processor, the CRTC and 
the associated video circuit of another machine can significantly modify the behaviours described 
here. Furthermore, the document only describes the CRTC functions used on the CPC; “text” 
mode and the “cursor” are therefore not discussed here. 
  
Part of the information presented in this document has been checked using a benchmarking 
program called SHAKER. It was tested for each CRTC on several machines. A document for each 
CRTC exists containing the photos from the results of each test for versions 1.8 and 1.9 of 
SHAKER. From version 2.2 onwards, a portal is available to facilitate access, comparisons and 
updates for these results: https://shaker.logonsystem.fr  
 
Truth takes up little space, but error occupies an infinite number of places. 
This document is subject to revision and change. 
  
Serge Querné  
Longshot / Logon System  
serge.querne@logonsystem.fr  
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3 GENERAL 

3.1 TERMINOLOGY 
 
The CRTC is a circuit that spends its time counting and comparing. 
 
It therefore mainly consists of counters, the limit value of which is generally defined in the 
programmable registers of the circuit. 
 
With the goal of constructing frames (image for CRTC) made of several vertical characters, in turn 
made of several vertical lines, which in turn is made of several horizontal characters, certain terms 
are associated with these registers and counters. 
 
We therefore speak of "horizontal total number of characters", "vertical total number of 
characters" and "Maximum Raster" to define the value of certain registers, with some differences 
on occasion depending on the technical documentation under consideration. Some emulators use 
"unofficial" acronyms to define the names of associated counters: HCC, VTAC, VLC, VCC, ... to 
name a few. 
 
These terms are no longer appropriate when working at a level other than that intended for the 
construction of a "standard" frame. 
 
Indeed, at a certain level, the logic of “horizontal” and “vertical” counting practically disappears. It 
then becomes difficult to speak of “characters” without tripping on one’s shoelaces, as depending 
on the circuit's programming, a vertical character can also be a horizontal character. 
 
This notion exists at most in relation to the synchronization logic of the constructed frame. 
 
Since it is possible to reduce the size of a line to 1 µsec, to reduce the size of a vertical character 
to 1 line and to reduce the size of a frame to 1 character, the horizontal and vertical qualifiers 
somewhat lose their meaning. 
 
For these reasons, I will generally denote the CRTC registers in this document as Rn and the 
associated counters as Cn. "Characters" will denote the words processed by the GATE ARRAY 
from the address provided by the CRTC. I have named the CRTC’s two internal pointers VMA and 
VMA’. 
 
I invite the authors of emulators based on this document to adopt these notations. 
Here are equivalents for some of the terms that I have encountered: 
 

Names identified in certain emulators Counters 

HCC (Horizontal Char Counter) C0 

VLC (Vertical Line Counter) C9 

VCC (Vertical Character Counter) C4 

VSC (Vertical Sync Counter) C3h 

HSC (Horizontal Sync Counter) C3l 

VTAC (Vertical Total Adjust Counter) C5 or C9 (on CRTC’s 0,3,4) 

VMA (byte pointer) VMA or VMA’ (word pointer) 
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3.2 ACRONYMS 
 
ASIC : Application Specific Integrated Circuit : Integrated circuit which groups on the same chip 

all the functions necessary for a specific application. The GATE ARRAY is an ASIC. 

CRTC : Cathode Ray Tube Controller: Circuit used to interface a computer with a cathode ray 

monitor capable of handling raster lines. 

C-HSYNC: Composite signal generated by the GATE ARRAY for horizontal synchronization of the 

image on the monitor. 

C-VSYNC: Composite signal generated by the GATE ARRAY for vertical synchronization of the 

image on the monitor. 

HBL : Horizontal BLank Line: Refers to the period during which the monitor's electron beam, 

which has reached the right side of the monitor, turns off the beam to return to the left of the 

screen. 

HSYNC : Horizontal SYNC: Refers to the signal emitted by the CRTC which allows the monitor 

(via the C-HSYNC signal emitted by the GATE ARRAY) to synchronize the frame horizontally on the 

sreen. 

IVM : Interlace Video Mode. 

IS : Interlace Sync. 

PIXEL-M2 : Definition of a pixel displayed in graphics mode 2 (0.0625 µsec). 

RFD : Rupture for Dummies on CRTC 1. 

RLAL : Rupture Ligne à Ligne (from French). Definition of a rupture where the video address can 

be updated on each each raster line of the frame. 

RV : Rupture Verticale (from French): Definition of a rupture whose axis is not "horizontal", and 

where horizontal zones can be created. 

RVI : Rupture Verticale Invisible (from French) : Refers to vertical ruptures occurring during the 

Hsync and not visible. 

RVLL : Rupture Verticale Last Line (from Frenglish): Refers to vertical ruptures using the C4 « last 

line » processing on CRTC’s 0 and 2. 

VBL : Vertical BLank Line : Refers to the period during which the monitor electron beam, which 

has reached the bottom of the screen, deactivates the beam to return to the top of the screen. 

VMA : Video Memory Address : CRTC pointer to the words addressed in memory and supplied to 

the GATE ARRAY for display. 

VSYNC : Vertical SYNC : Signal emitted by the CRTC which allows the monitor (via the C-VSYNC 

signal emited by the GATE ARRAY) to synchronize the frame vertically on the screen.  
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4 CRTC & CPC... 

4.1 GENERAL 
 
On the AMSTRAD CPC, the duration of a CRTC character is 1 µsec.. 
 
This CRTC character represents 2 bytes in memory. 
 
The memory pointer is communicated by the CRTC to the GATE ARRAY, which will always 
read the "central ram" of 64k. The GATE ARRAY cannot read the data in ROM or in the 
additional RAM of 6128s (or memory extensions). 
 
The CRTC is programmed so that the image thus created is supported by a monitor. 
A language shortcut is to use the term NOP instead of µsec (microsecond) because it is the time 
taken by this instruction in Z80A on CPC. 
 
On CPC, the Z80A instructions are aligned by rounding the M cycles of an instruction to a multiple 
of 4 T cycles. This alignment is linked to the need for the GATE ARRAY to interrupt the Z80A to 
access the ram whose address is provided by the CRTC. This operation slows down some 
instructions relative to the clock frequency. Achieving accurate code requires knowing the exact 
time taken by each instruction. See Chapter 25, page 267, for details of these durations for each 
instruction. 
 
A bit of history 

Old Cathode ray monitors and televisions lined up their display frequency with the 
electricity distribution network of the country of marketing.   
 
In Europe in particular, televisions built to support SECAM and PAL formats operate with a 
horizontal frequency of 15625 Hz, and a vertical frequency of 50 Hz.   
 
Note that the American (and Japanese) format was the NTSC (National Television System 
Committee) with a horizontal frequency of 15734 Hz and vertical of 60 Hz.   
 
The horizontal frequency of 15625 Hz comes from the use of 64 μs delay line, invented for 
the design of the Secam format by the engineer Henri de France. As a reminder, 64μs = 
0.000064 seconds (just enough time to have a strong coffee). 
 

The CRTC follows this logic and processes about 1 million characters per second because its 
frequency is 1 MHz.   
 
Without diabolical intervention on the position of the HSYNC, it is in principle programmed to 
generate complete lines of 64 μsec.   
 
To get closer to the desired frequency, the CRTC is generally programmed to display 312 lines of 
64μs, or exactly 19968 μsec (0.019968 seconds).   
 
This frequency being linked to a clock, we can see drifts between 2 machines after a certain time. 
 
  



V1.5 – 03.2023 – Page 16 / 281 
 

The standard format initialized by the CPC ROM in a European country is : 

 Lines of 64 horizontal "CRTC" characters of 1 μs each (composed of 40 characters 
displayed and 24 not displayed). 

 312 vertical lines, subdivided into vertical characters of 8 lines, or 39 characters.  
 Formula : ((R4+1) x (R9+1)) + R5  
 Of these 39 character lines, 25 are displayed. 
 CRTC table ROM address: &5C5 

 
The standard format initialized by the CPC ROM in the United States is:  

 Lines of 64 horizontal "CRTC" characters of 1 μs each (composed of 40 characters 
displayed and 24 not displayed).  

 262 vertical lines, sub divided into vertical characters of 8 lines, or 32 characters + 6 
lines of adjustment  

 Formula : ((R4+1) x (R9+1)) + R5  
 Of these 32.75 character lines, 25 are displayed. 
 CRTC table ROM address: &5D5  

 
Note 1 : It is the bit 4 of port B of the PPI (LK4) that allows you to test which table to use. 
 
Note 2 : Initializing the CRTC is one of the first things the CPC's LOW ROM does when the 
machine is turned on and reset. Register initialization begins 64 μsec after the Z80A reads the first 
ROM instruction. Registers are updated from register 15 to register 0. 
 
 
The CRTC has registers to manage a cursor and read data sent by an "optical pen". Cursor 
registers are not used on CPC, which does not handle a hardware cursor, usually provided when a 
text mode is handled. 
 
However, they are a point of interest, because actions on other registers in or out of a 
synchronization period, with small values, could lead to consequences on other registers. 
Otherwise, it is always possible to store a value there, such as the type of CRTC. 
 
The operation of these registers is not covered (at the moment) in this document. 
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4.2  CRTC TYPES 
 
AMSTRAD had the brilliant idea of using CRTC 6845 circuits manufactured by different 
manufacturers in its machines. They even designed ASIC’s that could emulate its operation. 
 
A bit of history 

While Amstrad wanted to attack the US market with the CPC 6128, a problem was identified 
in ROM with registry value 5 (vertical adjustment). 
 
This value was set at 6 in accordance with the desired frequency of 60Hz in the USA (262 
lines), but (wrongly) ignored the interrupt system managed by the GATE ARRAY. Indeed, on 
a European CPC, interruptions start 2 lines (we will consider that we have 1 HSYNC per line) 
after the occurrence of the VSYNC signal by the CRTC. 
 
These interruptions have a period of 52 "HSYNC lines", which gives exactly 6 periods during 
the 312 lines (See Chapter 26.6 on INTERRUPTS). To stall 5 periods of 52 lines, it would 
have been necessary to program 260 lines and not 262 as was done, and therefore that R5 
is programmed with 4 instead of 6. 
 
These 2 more lines cause the interruption to arrive on not the same line on which the CRTC 
reports the start of VSYNC, BUT before it. 
 
That is, on a US CPC, a program whose main code tests the VSYNC wait via the PPI can be 
interrupted during this wait. If the interruption lasts too long, when it returns, the VSYNC 
waiting loop has missed the signal (the bit has returned to 0), and a risk of "deadlock" exists. 
 
This could lead to compatibility issues for programs produced in Europe. AMSTRAD then 
decided to remedy the problem by ....changing the 60 Hz table to ROM....  
No... I'm kidding... too simple. 
 
To avoid this "deadlock" without modifying the ROM, Amstrad engineers thought they could 
"limit the problem" by increasing the duration of the VSYNC. This was perfectly possible 
using the CRTC's Registry 3, which had been programmed with 8 lines ..... in the ROM. 
 
It is likely that they thought that there were CRTC models without the function used to set 
the number of VSYNC lines (these models set the number of lines at 16) and thus decided 
that the American CPCs would only be equipped with CRTC’s 1 and 2, without this function. 
 
If AMSTRAD engineers were aware of the existence of these differences, it can be assumed 
that the first CRTC’s used were type 0s, since this function is used and programmed by the 
ROM. 
 
From there to be able to say that without a bug related to a 4 instead of a 6 in the ROM, 
there would be only one type of CRTC used in all CPC’s, it is to ignore the commercial 
considerations in the component market compared to the success of the machine in Europe. 
 
 

Several companies have created different versions of the circuit, implementing additional 

functions, such as programming the number of lines of the VSYNC that I have just mentioned. 
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It can be deduced, however, that the designers of the BASIC ROM: 

 originally worked with a CRTC with the ability to program the number of lines for 
VSYNC. 

  
Beyond the functional and technical differences documented in circuit manufacturers' guides 
(called "datasheets" with 2 "e"’s), these CRTC’s tend to behave differently when starting to modify 
registers:  

 multiple times during a frame. 

 during or outside HSYNC/VSYNC periods. 
 with a value of 0, which is a special case for managing multiple registers. 

  
These differences impact the compatibility of programs, especially when the address of the video 
pointer is updated. 
This technique is still commonly called "Rupture" because... it is simpler and more generic than to 
say "Offset Split Screen". 
 
Differences in counter management (which can overflow in a few situations) usually lead to a 
horizontal (R2) and/or vertical (R7) synchronization defect. 
  
If a Z80A code "waits" for the VSYNC signal or uses interrupts (which depend on HSYNC), the 
mess is accentuated.  
 
A bit of history 

To my knowledge, the first program to have carried out a CRTC test was the game "Get 
Dexter" (“Crafton & Xunk” in French), written by Rémi Herbulot and Michel RHO in 1986. In 
this game, the image update takes place through horizontal scrolling, which uses register 2 
(positioning the HSYNC on another character).  
 
This method, on a MOTOROLA CRTC, causes a loss of vertical synchronisation when VSYNC 
occurs during a HSYNC (Ghost Vsync).  In other words, in this situation, the CRTC falsely 
believes it is generating a VSYNC signal for the monitor. 
 
I guess Rémi Herbulot had to have access, at Ere Informatique game company, to a CPC 
with a HITACHI CRTC (like mine at the time) and another with a MOTOROLA CRTC. Having 
made this observation, he created a test based on the reading in &BF00 of register 12, which 
makes it possible to distinguish the CRTC HITACHI from the CRTC MOTOROLA.  
 
And so, he managed a display with and without scrolling on the screen.  
 
That is why there is no scrolling in this game on CPC’s equipped with a UMC CRTC, while this 
CRTC does allow it without issue, because as with the MOTOROLA CRTC, its register 12 is 
not readable.  
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A bit of history (yet !) 
When the first "rupture" techniques began to be used massively in demos, the differences 
between CRTC soon began to be a problem. And especially when independent programmers 
(often high school or university students) began to form the "demo" scene and their demos 
began to circulate in a less discretionary way. Initially, these first demos were mostly 
introductions for cracked games that circulated in schoolyards.  
The first demo programmers had not yet built up a "network" (the demoscene) and usually 
had only one machine on hand. The first intros and demos circulated in a small and very 
regional circle. The "network" consisted, in the 80s, of postal exchanges, Minitel’s (a French 
ancestor of the internet, like Prestel in the UK) and ruinous telephone exchanges, with very 
little or no relations with other countries. 
 
Communication with people from other regions first went through the consultation of 
classified ads in the few computer magazines of the time, because it was difficult to find 
contact details in the introduction preceding a cracked game. Programmers could hardly see 
the result produced by their code on other machines, and the inertia was enormous. It was 
difficult to adapt the code via postal exchanges, without having the machine (or even 
wanting to do it, simply). The problems encountered could range from image 
synchronization-loss to outright crashing of the machine. 
 
It was difficult to be categorical about the actual origin of these problems, and especially 
about their extent. Nevertheless, with the grouping of the demomakers and the enlargement 
of the demoscene, it became possible to compare the code on different machines. 
 
The presence of some electronics engineers in the ranks of the demomakers made it possible 
to identify the culprits... (Mr. SUGAR is still at large). 
 
Some "universal" rules resulting from empirical approaches have been described in secret 
documentation which did not remain so for long ("You should not do this operation here in 
order for it to work everywhere", for example). 
 
It should be noted that some techniques are still currently considered impossible to port 
from one CRTC to another (until this document...). 
 
CRTC 2 (MOTOROLA) quickly proved to be the problematic one for one of the most widely 
used techniques, which is to place R4=R9=0. 
 
The code needed to ensure CRTC compatibility can be much more complex than just 
knowing when to modify register 9 or 4, we'll see... 
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In order to exploit the rules allowing compatibility, it was first necessary to identify the different 
CRTC’s. 
 
Many methods exist today. See Chapters 27, page 278, and 28, page 280. 
 
The numbering has remained fixed to this day from the order where I discovered these circuits 
with the help of some members of the group of demomakers “Logon System”. 
 
We discovered the CRTC emulated "Pre ASIC" after the release of the AMSTRAD PLUS, and that's 
why its number is greater than 3, although it came out earlier chronologically. 
 

Type Brand Model 

0 HITACHI HD6845S(P) 

0 U.M.C. (United Microcircuits Corporation) UM6845 

1-A U.M.C. (United Microcircuits Corporation) UM6845R 

1-B U.M.C. (United Microcircuits Corporation) UM6845R 

2 MOTOROLA MC6845(P) 

3 AMSTRAD ASIC 40489 

4 AMSTRAD ASIC 40226 

 
Note 1 : CRTC’s 3 and 4 are CRTC’s emulated by ASIC’s, but are nevertheless CRTC! Without 
enabling the complementary functions of ASIC 40489, the behaviour of these two CRTC’s cannot 
be differentiated at present. 
 
Note 2 : The "Pre-ASIC" (CRTC 4) was most certainly designed with the AMSTRAD PLUS in mind, 
as its C9 counter is intended to be interrupted on any line. This is why positioning R9 at 0 can be 
done on the last line of a character (CRTC 0 compatibility) or on the first line of a character (CRTC 
1 compatibility). 
 
Note 3 : It cannot be excluded even at present, that some series of CPC’s may be equipped with 
different CRTC models, available from the 3 manufacturers. (Please let me know if you discover 
another model, and you are sure that it was not your little sister who replaced it for a laugh). 
Additionally, HITACHI's CRTC HD6845S, which is identified as type 0, behaves exactly like UMC's 
CRTC UM6845. Probably a business deal between the firms where it is just the manufacturer 
marking that has changed...  The UMC documentation specifies this in its comparison table with 
other circuits. There is currently no test that allows the distinction of these two circuits, but it may 
be possible via the "Interlace" mode or the special management of C0 by the HD6845S. 
 
Note 4 : Programming R3 with &8x is a very bad habit, since CRTC’s 1 and 2 also exist in 
European machines, and they do not respect this value... 
 
Note 5 : Scheduling a specific update to a CRTC register in an interrupt routine that does not 

interrupt perfectly synchronized code is a very bad idea. (And may suggest (wrongly) a CRTC 

difference). 

Note 6 : The difference observed between two CRTC’s UM6845R may not be linked to the CRTC. 
Nevertheless, there is a noticeable difference. (See Chapter 0) 
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4.3  GENERAL VIEW OF THE REGISTERS 
CRTC 0 CRTC 1, 2 CRTC 3, 4

Register Definition Unit r/w 7 6 5 4 3 2 1 0 r/w 7 6 5 4 3 2 1 0 r/w 7 6 5 4 3 2 1 0

R0 Horizontal total character number Char w w w

R1 Horizontal displayed character number Char w w w

R2 Position of horizontal sync. pulse Char w w w

R3 Pulse width of horizontal sync. pulse Function w v v v v h h h h w h h h h w v v v v h h h h

R4 Vertical total character number Char Row w w w

R5 Total raster adjust Scan Line w w w

R6 Vertical displayed character number Char Row w w w

R7 Position of vertical sync. pulse Char Row w w w

R8 Interlace Mode and Skew Function w c c d d i i w i i w c c d d i i

R9 Max Scan Line Address Scan Line w w w

R10 Cursor start Scan Line w b p w b p r s 1 s s s s s s

R11 Cursor end Scan Line w w r s 0 s 1 s s s s

R12 Display start address (High) Pointer r/w w r/w

R13 Display start address (Low) Pointer r/w w r/w

R14 Cursor address (High) Pointer r/w r/w r/w

R15 Cursor address (Low) Pointer r/w r/w r/w

R16 Light Pen (High) Pointer r r r

R17 Light Pen (Low) Pointer r r r

Access ports to the CRTC on CPC r/w 7 6 5 4 3 2 1 0 r/w 7 6 5 4 3 2 1 0 r/w 7 6 5 4 3 2 1 0

&BC00 Register selection Number w w w

&BD00 Register write Value w w w

&BE00 Register status Function r L b r

&BF00 Register read Value r r r

 
See Chapters 21, 27.1.8 and 27.1.9 for more information on the content of the status register and 
reading this register according to the different CRTC’s. 

4.4  CRTC ACCESS  

4.4.1 GENERAL 
 
Access to I/O with a Z80A usually requires the use of specific instructions. 
 
These instructions (OUT, OUTI, INI, IND...) are in principle intended to use devices whose 
addresses are defined on the least significant 8 bits of the 16-bit address bus. 
 
The 16-bit address bus is specified in the BC register, but some instructions (OUTD, OUTI, INI, 
IND, ...) also use B as counter. 
 
From a computer design perspective, it is not advisable to place the address of devices that can 
use these instructions on the most significant byte of the 16-bits address bus. 
 
This wise advice from Mr. ZILOG was not listened to by Mr. SUGAR. 
 
Also access to devices on CPC mainly goes through A8..A15 bits of the address bus (FDC 765 
being an exception in part). 
 
Device selection bits should therefore be set to B.  
 

Welcome to the CPC!  



V1.5 – 03.2023 – Page 22 / 281 
 

Examples

Selection register 12

BASIC OUT &BC00,12

Z80A LD BC,&BC00+12:OUT(C),C

Sending valeur &30 in register 12 (previously selected)

BASIC OUT &BD00,&30

Z80A LD BC,&BD30:OUT (C),C

Reading register 12 (previously selected / updated)

BASIC PRINT INP(&BF00)

Z80A LD BC,&BF00 : IN A,(C) 

Reading status register

BASIC PRINT INP(&BE00)

Z80A LD BC,&BE00 : IN A,(C) 

 
 

The use of register B prevents the use of interesting instructions to send or read a series of 
successive values on a port, such as OTIR, OTDR, INIR, INDR.  
  
Indeed, these instructions use B as the counter of the number of values to be read in a table and 
decrement this counter until it reaches the value 0. 
 
Digressive Remark : 

These repetitive instructions can be used experimentally, to process more than one value, on 
a device whose selection bits do not participate in the counter (most significant bits), such as 
the GATE ARRAY.  It is possible to issue one of these instructions and savagely interrupt it 
by positioning it judiciously before an interruption occurs.  This interruption will nevertheless 
have to "forget" the return address placed on the stack before re-authorizing other 
interruptions.  This interesting aspect is however very limited (and especially playful) and can 
activate other devices depending on the number of values read in the table.  

 
However, it is still possible to use   

 OUTI or OUTD instructions to send one by one the data from a table (pointed by HL) to 
the CRTC.   

 INI or IND instructions to read one by one the data from a table (pointed by HL) of the 
CRTC.   

   
The advantage is that these instructions are "fast" according to the number of operations 
performed. 
  
The use of the OUTI/OUTD statement is possible by first incrementing B between each instruction 
for OUTI/OUTD because B is decremented before accessing the port.   For the CRTC, which uses 
bits 0 and 1 of B as an index, this implies that B is pre-loaded with the port address + 1 for the 
OUTI/OUTD instructions to work.   
 
For reading instructions, the addressed device is defined by BC before B is decremented, so it 
must contain the normal address of the port before reading. 
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Example in Z80A : 
  LD BC,&BC02  ; Hsync position register selection 
  OUT (C),C 
  LD HL,TABHSYNC ; Pointer to Hsync position table 
  LD B,&BD+1  ; IO Address sending data+ 1 : &BE 
  OUTI   ; OUTI decrease B by 1, send TABHSYNC[0] on the &BD IO Addr 
     ; and then increase the pointer by 1 
  INC B   ; B is set again to &BE 
  OUTI    ; OUTI decrease B by 1,  send TABHSYNC[1] on the &BD IO Addr 
     ; and then increase the pointer by 1 
TABHSYNC DB 50, 10 
 

4.4.2 Z80A INSTRUCTIONS 
 
Instructions in Z80A for processing Input/Output : 
 
INSTR. DURATION DESCRIPTION 

OUT (C),r8 4 µsec r8=[A or B or C or D or E or H or L] 
Writing to devices defined in BC the value contained in the r8 register. 

OUT (n),A 3 µsec The input-output address is defined by the couple An, and the data sent 
to the device is A. This double constraint drastically limits the number of 
values available to one device without causing a collateral effect on 
another device (selection + value). 

OUT (C),0 4 µsec Writing value 0 to the device(s) defined in BC.  An interesting instruction 
for a demomaker! But not only that... 

OUTI 5 µsec Decrement B, then read the value pointed by HL, incrementing HL and 
sending the value read on the port sent by BC. 

OUTD 5 µsec Decrement B, then read the value pointed by HL, decrementing HL and 
sending the value read to the port sent by BC 

IN r8,(C) 4 µsec r8=[A or B or C or D or E or H or L] 
Read in the r8 register the value sent by the device defined in BC. If 
several devices are selected, there is no doubt that a game of musical 
chairs will take place... 

IN A,(n) 3 µsec The input-output address is defined by the couple An, and the data read 
will modify A. 

IN (C) 4 µsec It is an "unofficial" instruction. The value present on the data bus is read 
and its evaluation affects F. 

INI 5 µsec Reading the value on the port addressed by BC and writing this value to 
the address pointed by HL, HL decrement, B decrement  

IND 5 µsec Reading the value on the port addressed by BC and writing this value to 
the address pointed by HL, HL decrement, B decrement 

 
When an I/O takes place different signals of the Z80A can be activated. 
 
The MREQ signal is set high and IORQ low. The RD/WR pins are basically used to indicate 
whether the Z80A should read or write data. 
 
The GATE ARRAY is write-only, and the RD pin is in the inactive state, which implies that a read 
on this circuit is not considered. At best, a high impedance state available on the data bus is 
recovered. 
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However, the CRTCs are not connected to the Z80A's RD and WR pins, so there is no detection of 
the I/O direction. Consequently, if a read instruction is used on a write register of the CRTC, 
then a data is sent to the CRTC. 
 
With an IN A,(C) instruction, the data on the data bus is sent to the CRTC.  
 
But with the IN A,(n) instruction, it is possible to send the contents of A to the An port, just as it 
can be done with the OUT (n),A instruction. It is therefore possible to send a value to the CRTC 
while modifying A. However, it would be risky to trust the returned value. 
 
Example in Z80A: 
LD A,%00011001 ; Bits 0 and 1 select the Write port of the CRTC 
IN A,(#FF)  ; Sends the value of A to the last selected CRTC register  
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4.4.3 ACCESS DELAYS  
 
The following table indicates for some I/O write instructions the timing of the register update in 
the CRTC and for some I/O read instructions the timing when the value from the circuit is updated 
in the Z80A register or RAM. 
 

INSTRUCTIONS DURATION 
I/O CONSIDERATION 

CRTC 0, 1, 2 CRTC 3, 4 

OUT (C),r8 4 µsec 3rd µsec 4th µsec 

OUT (C),0 4 µsec 3rd µsec 4th µsec 

OUT (n),A 3 µsec 3rd µsec 3rd µsec 

OUTI 5 µsec 5th µsec 5th µsec 

OUTD 5 µsec 5th  µsec 5th µsec 

IN r8,(C) 4 µsec 4th µsec 4th µsec 

INI 5 µsec 4th µsec  

IND 5 µsec 4th µsec  

IN A,(n) 3 µsec 3rd µsec 3rd µsec 

 
It is important to note however, that consideration of a write during the update microsecond does 
not take place at the same "time" according to the instructions used, and this can therefore affect 
the management of the value by the circuit. 
 
One way to measure this difference is to use processes that are not "slowed down" by the CRTC 
and the GATE ARRAY, such as the HSYNC display for example. See Chapter 14.9, page 133.  
 
We can also measure this difference, for example, between what happens with an I/O on the 3rd 
NOP of an OUT(C),R8 and the 5th NOP of an OUTI on a CRTC 1. See Chapter 13.6.2, page 115.  
 
It should also be noted that on CRTC’s 3 and 4, the CRTC misses the I/O on the 3rd μsec of 
OUT(C),R8 instruction and retrieves it on the 4th μsec of the instruction. Which delays register 
updates by 1 μsec if this instruction is used. This shift does not occur if the OUTI/OUTD 
instructions are used. See next Chapter. 
 
The majority of the diagrams that refer to Input-Outputs in this document are 
performed on the basis of the OUT(C),R8 instruction. For CRTC’s 3 and 4, the Input-
Output is positioned on the 4th µsecond. 
 
In practice, for code produced for CRTC’s 3 or 4, it is necessary to position a write I/O 
instruction 1 μsec before the one which would have been placed for CRTC’s 0, 1 or 2. 
 
This is established!  
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4.4.4 OUTs DISSECTION  
 
This chapter aims to try to explain why an output entry with an “OUT(C),R8” occurs on the 3rd 
NOP for a CRTC equipped with a GATE ARRAY, and on the 4th NOP for an ASIC that emulates a 
CRTC (CRTC’s 3 and 4), but also why there is a difference (whether on a CRTC or ASIC) between 
an input/output performed with an “OUT(C),R8” and that performed with an “OUTI”. 
 
The GATE ARRAY, within the CPC, is THE conductor for many components. It is clocked at the 
staggering speed of 16 MHz (which allows it to display pixels Mode 2 at 0.0625 μSec). It gives a 1 
MHz rate for the AY-3-8912 (sound generator), the CRTC, and clocks the Z80A at 4 MHz. 
 
One of the objectives of the gate array designers was to use Z80A's ability to slow down its 
execution to retrieve the RAM access priority for addresses pointed to by the CRTC. 
 
The instructions of a z80a consist of periods of execution (called cycles M) in which several sub-
periods occur (called cycles T). Each "T" sub-period duration is 0.25 μsec (the size of 4 pixels in 
graphic mode 2). 
 
The common point of all Z80A instructions is the need to access the RAM to read the code(s) of 
the instruction to be executed (called "opcode" for operation code). This reading, called "opcode 
fetch", is performed during a first cycle called M1. Each cycle M performs a basic instruction : 
 • Reading a RAM opcode ("opcode fetch"). 
 • Reading or writing in a byte by the Z80A internal code that executes the opcode. 
 • Reading or writing an input / output port ("IO REQ"). 
 • Bus: request or acknowledge. 
 • Interruption: request or acknowledge. 
 
A cycle M consists of several T cycles, some of which place a wait signal in the active state to 
indicate to another circuit that the Z80A agrees that it should be slowed down. This wait cycle is 
commonly named Tw. This is particularly the case for the instructions: 
 • OPCODE FETCH, during the 2nd cycle T. 
 • Reading or writing memory, during the 2nd cycle T. 
 • IO REQ, during the 3rd cycle T. 
 
When the Z80A "performs" a cycle Tw, it looks at its Wait line (in this case that 
connected to the gate array) and if it is active, then it will generate another cycle TW. 
This makes it possible to block the processor indefinitely if the circuit that drives the line wait 
decides to. 
 
This blocking is only possible if the processor has allowed it in a Tw cycle and the GATE 
ARRAY/ASIC made the blocking request at that time. 
 
The trick of the GATE ARRAY/ASIC designers has been to continually generate 3 Tw 
followed by a "no Tw" cycle. When the Z80A, for a Cycle T that makes a wait, falls on one of 
these cycles Tw, it will run the "remaining" sequence of Tw, which has the effect of "linearizing" 
the instructions over 4 T Cycles. 
 
In other words, if an instruction started on an "aligned" T-cycle and ends with a number of T-
cycles which is not a multiple of 4, then the next instruction will be "stretched" during its first 
cycle "M". 
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To illustrate this, diagram A on the following pages describe an OUT(#nn),A instruction (1 
opcode #D3) that needs 11 cycles to run. This instruction has an odd number of T-cycles (so no 
multiple of 4) and is immediately followed by a second OUT (#nn),A. 
 
When running the first OUT(#nn),A, none of the WAIT signals of the Z80A falls at the same time 
as a WAIT signal from GATE ARRAY. The instruction is executed in 11 T-Cycles (0.25 x 11 = 2.75 
μSec). 
 
When the second OUT(#nn), A is executed, the WAIT signal from the Z80A during cycle M1 
occurs at the same time as the WAIT signal from the GATE ARRAY. This causes the generation of 
a 2nd wait T-cycle by the Z80a (see "Wait extent" on the diagram A). During this 2nd wait cycle, 
the GATE ARRAY does not send a WAIT signal, which stops the generation of wait cycles by the 
z80a. Therefore this 2nd OUT (#nn), finds itself "stretched" by 0.25 μsec to match the memory 
access pattern defined by the gate array. Its execution then takes 3 μsec (12 t-cycles). 
 
And so on. As long as the "rectified" instruction itself contains an "unaligned" number of T-cycles, 
the duration of the following instruction will also be rectified. Thus in the previous example, if a 
NOP (4 t-cycles) is added behind the 2nd OUT(#nn),A, then the cycle T2 of the M1 cycle will 
generate a wait at the same time as the gate array, which will lengthen the NOP duration of 0.25 
μsec (so 1.25μsec in total). Another NOP after this first NOP will be aligned. Indeed, the T2 cycle 
of its M1 cycle will be aligned with the "non-wait cycle" of the GATE ARRAY, and the instruction 
will then run in 4 T-Cycles (1 μsec). 
 
The same goes for all the instructions whose M1 cycle lengthens according to the timing of the 
gate array in order to maintain priority on the RAM accesses to the address provided by the CRTC 
every 4 T-Cycles. 
 
As part of an I/O writing operation, this mechanism is used to stall, compared to the beginning of 
a μsec, the moment when I/O begins. In this case on the cycle T2 of the I/O M cycle. The 
Z80A puts the I/O address on the data bus (a reminder of address &BD00 for writing to a CRTC 
register). 
 
The GATE ARRAY clocks the CRTC at 1 MHz (but not quite at the same time as for the AY-3-
8912). The CRTC periodically checks whether the Z80A IORQ signal is active in order to determine 
if it is affected by the I/O. If this is the case when writing, it can recover the value to select one of 
its registers or update the one that is selected. 
 
Depending on the instruction which generates the I/O, the data is not immediately present when 
the CRTC is in a state to update its registers, which may have the consequence of deferring the 
writing of registers between 2 different instructions within the same micro-second. This is 
particularly the case between the instruction OUT(C),reg and OUTI, whose difference can be 
highlighted with R2.JIT or R3.JIT techniques, for example. Diagram B on the following pages 
parallels these two instructions. 
 
In principle, the ASIC’s do not clock the CRTC exactly like the GATE ARRAY ("CRTC’s" 3 and 4). 
There is undoubtedly a lag of the type which I represented on diagram C, which has the 
consequence of modifying the time of register updates relative to what happens with the GATE 
ARRAY. 
It also explains why the update of a CRTC register takes place on the 5th μsec of the OUTI 
instruction, regardless of the type of CRTC, while there is a difference of 1 μsec when the update 
takes place with the OUT(C),R8 instruction. 
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Diagram A : OUT(#NN),a + OUT (#nn),A + NOP + NOP 
 
OUT(#nn),A 1

1 µSec 1 µsec 1 µSec

GA WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT

Z80 Cycle M M1 - FETCH 0xD3 M2 -READ CYCLE M3 - OUT

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

No Tcycle T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Z80A Oper -- MREQ RD RFSH RFSH MREQ -- MREQ RD MREQ RD -- WR IORQ WR IORQ WR IORQ

Z80A Tw WAIT WAIT WAIT

OUT(#nn),A 2

1 µsec 1 µSec 1 µsec

GA WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT

Z80 Cycle M M1 - FETCH 0xD3 M2 -READ CYCLE M3 - OUT

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 8 9 10 11 12 13 14 15 0 1 2 3 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

No Tcycle T1 T2 Tw T3 T4 T5 T6 T7 T8 T9 T10 T11

Z80A Oper -- MREQ RD RFSH RFSH MREQ -- MREQ RD MREQ RD -- WR IORQ WR IORQ WR IORQ

Z80A Tw WAIT WAIT extent WAIT WAIT

NOP 3 NOP 4

1 µsec 1 µSec

GA WAIT WAIT WAIT WAIT WAIT WAIT WAIT

Z80 Cycle M M1 - FETCH 0x00 M1 - FETCH 0x00

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11

No Tcycle T1 T2 Tw T3 T4 T1 T2 T3 T4

Z80A Oper -- MREQ RD RFSH RFSH MREQ -- MREQ RD RFSH RFSH MREQ

Z80A Tw WAIT WAIT extent WAIT
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Diagram B : OUT(C),H vs OUTI on CRTC 0, 1, 2 

CRTC CRTC

OUTI WAIT/WAIT

1 µSec 1 µsec 1 µSec 1 µsec 1 µSec

GA WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT

Z80 Cycle M M1 - FETCH 0xED M2 - FETCH 0xA3 M3 -MEMORY READ CYCLE M3 - OUT

CLK/CPU H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

No Tcycle T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Tw Tw Tw T12 T13 T14 T15 T16

Z80A Oper -- MREQ RD RFSH RFSH MREQ -- MREQ RD RFSH RFSH MREQ -- -- MREQ RD MREQ RD -- WR IORQ MREQ RD -- WR IORQ WR IORQ WR IORQ

Z80A Tw WAIT WAIT WAIT WAIT extent WAIT extent WAIT extent WAIT

Z80A IOrq 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1

CRTC CRTC CRTC CRTC

OUT (C),H WAIT/WAIT

1 µSec 1 µsec 1 µSec 1 µsec

GA WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT

Z80 Cycle M M1 - FETCH 0xED M2 - FETCH 0x61 M3 - OUT

CLK/CPU H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L

Pixel 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

No Tcycle T1 T2 T3 T4 T5 T6 T7 T8 T9 (T1) T10(T2) T11(TW*) Tw Tw Tw T12 (T3)

Z80A Oper -- MREQ RD RFSH RFSH MREQ -- MREQ RD RFSH RFSH MREQ -- WR IORQ WR IORQ WR IORQ WR IORQ WR IORQ

Z80A Tw WAIT WAIT WAIT WAIT extent WAIT extent WAIT extent

Z80A IOrq 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

CRTC CRTC CRTC CRTC

 
 
 
Diagram C : OUT(C),H vs OUTI on CRTC 3, 4 
 

ASIC ASIC ASIC

OUTI WAIT/WAIT

1 µSec 1 µsec 1 µSec 1 µsec 1 µSec

GA WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT

Z80 Cycle M M1 - FETCH 0xED M2 - FETCH 0xA3 M3 -MEMORY READ CYCLE M3 - OUT

CLK/CPU H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

No Tcycle T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Tw Tw Tw T12 T13 T14 T15 T16

Z80A Oper -- MREQ RD RFSH RFSH MREQ -- MREQ RD RFSH RFSH MREQ -- -- MREQ RD MREQ RD -- WR IORQ MREQ RD -- WR IORQ WR IORQ WR IORQ

Z80A Tw WAIT WAIT WAIT WAIT extent WAIT extent WAIT extent WAIT

Z80A IOrq 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1

ASIC ASIC ASIC

OUT (C),H WAIT/WAIT

1 µSec 1 µsec 1 µSec 1 µsec

GA WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT WAIT

Z80 Cycle M M1 - FETCH 0xED M2 - FETCH 0x61 M3 - OUT

CLK/CPU H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L

Pixel 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

No Tcycle T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Tw Tw Tw T12

Z80A Oper -- MREQ RD RFSH RFSH MREQ -- MREQ RD RFSH RFSH MREQ -- WR IORQ WR IORQ WR IORQ WR IORQ WR IORQ

Z80A Tw WAIT WAIT WAIT WAIT extent WAIT extent WAIT extent

Z80A IOrq 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

ASIC ASIC ASIC
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5  OTHER CIRCUITS 

5.1  ACCESS 
The devices on the CPC are wired in such a way as to partially decode the address used to 
perform the Input/Output. (Did I ever write "Welcome to CPC"?). 
 
A device is affected by an Input/Output operation as soon as a few precise bits of the address bus 
are set to 0 and/or 1. This implies that if other bits relative to other devices are also set, then the 
Input/Output operation will also affect them. 
 
It is therefore possible to send the same value to different devices simultaneously. 
 
The advantage may seem relative because the common values useful to several devices are not 
huge. However, if we measure the consequences of sending unforeseen values to a device, it 
makes it possible to make "savings" of register(s) by judiciously modifying the value of the Z80A B 
and/or C registers. 
 
In an environment highly constrained by machine time, it may have the advantage of assigning 
other uses to these registers. 
 

Register B (or A) Register C (or n)

Circuit r/w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Select Addr

PAL w 0 x x x x x x x x x x x x x x x &7F00

Gate Array w 0 1 x x x x x x x x x x x x x x &7F00

CRTC Select w x 0 x x x x 0 0 x x x x x x x x &BC00

CRTC Write w x 0 x x x x 0 1 x x x x x x x x &BD00

CRTC Status r x 0 x x x x 1 0 x x x x x x x x &BE00

CRTC Read r x 0 x x x x 1 1 x x x x x x x x &BF00

ROM Select w x x 0 x x x x x x x x x x x x x &DF00

Printer w x x x 0 x x x x x x x x x x x x &EF00

PPI Port A r/w x x x x 0 x 0 0 x x x x x x x x &F400

PPI Port B r/w x x x x 0 x 0 1 x x x x x x x x &F500

PPI Port C r/w x x x x 0 x 1 0 x x x x x x x x &F600

PPI Control w x x x x 0 x 1 1 x x x x x x x x &F700

FDC Status r x x x x x 0 x 1 0 x x x x x x 0 &FB7E

FDC Data r/w x x x x x 0 x 1 0 x x x x x x 1 &FB7F

FDC Motor w x x x x x 0 x 0 0 x x x x x x x &FA7F  
 
Finally, still from the perspective of constrained environments, it may be useful to consider that 
not all bits of a value sent to a device are useful. 
 
For a CRTC, this is true for register update data, such as R9 truncated to 5 bits, as well as the 
value of the register number. 
 
In other words, you can select R9 with the value 9, but also &31 (00110001), and update it with 
the value 7, but also &27 (00100111). 
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5.2  CPC + / GX 4000 
 
On the CPC+ (or the GX 4000), it is possible to communicate directly with the emulated CRTC, via 
additional registers created specifically to manage the complementary "PLUS" functions. These 
functions allow for example, the masking of data, performing fine shifts, defining lines and 
addresses of rupture, or even to stall a raster or "DMA" interrupt (not without bugs however!). 
 
The current objective of this document is not (yet) to analyse the interaction between these 
registers and the EMULATION of the CRTC. Access to these specific registers does not pass 
through the Z80A's input/output system described above. 
 
The CPC+ has a page of registers "mapped" on a memory area.   
Each register therefore has its own address.  
The Z80A accesses these registers with simple writes (or reads) to a given address. 
 
It is therefore possible to access certain functions (e.g. changing colours) in two different ways. 
The information provided for CRTC 3 in this version of the document relates only to I/O performed 
via the Z80A OUT Instructions. 
 
It should be noted, however, that the page of these registers, located between &4000 and &7FFF, 
is accessible via a previously untapped function of the GATE ARRAY. 
 
However, this function itself is conditional on the use of a 17-byte "unlock" sequence which must 
be sent to the CRTC's selection port (&BC00) : 
255, 0, 255, 119, 179, 81, 168, 212, 98, 57, 156, 70, 43, 21, 138, 205, 238 
 
Remark : 
There is no point in sending this unlock sequence to a CRTC 4.  
They didn't use the same sequence.  
I wouldn't say anything more without the presence of my lawyer. 
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6 BUILDING A FRAME 

6.1  GENERAL LOGIC 
The following algorithms describe the general display management logic of an "ideal" CRTC. As 
we will see later, this logic is sometimes very different depending on the situation. 

6.1.1 CHARACTER COUNTING 
C0 is incremented by 1      
When C0 reaches R0       
 C0 goes to 0      
 C9 is incremented by 1      
 When C9 reaches R9      
  C9 goes to à 0     
  C4 is incremented by 1     
  When C4 reaches R4     
   When C5 reaches R5    
    C4 goes to 0, C5 goes to 0   
    MA is updated from R12/R13   
   Otherwise C5 is incremented by 1  
 

6.1.2 SYNCHRONIZATIONS 
When C0 reaches R2    
 Hsync starts, C3l=0  
 C3l is incremented if R3l>0  
 When C3l=R3l  
  End of Hsync 
  
When C4 reaches R7   
 Vsync starts, C3h=0  
 C3h is incremented  
 When C3h reaches R3h (or 16)  
  End of Vsync 
 

6.1.3 CHARACTER DISPLAY 
When C0 goes to 0  
 Character display is enabled 
When C0 reaches R1  
 Character display is disabled 
  
When C4 goes to 0  
 Character line display is enabled 
When C4 reaches R6  
 Character line display is disabled 
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6.1.4 VIDEO POINTER  
 
At each μsec, VMA is incremented by 2 as long as the display is active and C9 is part of the 
address          
If C0=R0  
Then C0=0        true for R0=0 
 If C9=R9   
 Then C9=0      true for R9=0  
  If C4=R4  
  Then      
   If R5=0   
   Then     true for R5=0  
    C4=0    true for R4=0  
    MA=R12/R13   
   Else  
    C4=C4+1 (CRTC’s 0, 1 and 2) and C5 management 
  Else C4=C4+1     
 Else C9=C9+1       
Else C0=C0+1 

6.1.5 DIAGRAMS 
 
The following diagrams describe the overall construction of a frame from the different registers, 
without modifying the registers during the frame. 
Screen definition :Horiz. Reg Vertical Reg Vid Ptr Special

R0 R1 R2 R3 R4 R5 R6 R7 R9 R12/R13 R8

63 40 46 14 35 24 25 30 7 &30 0 0  
(R0+1) x [((R4+1) x (R9+1)) + R5]

64 x ((36 x 8)+24) = 19968 µs  
 
Description of the first 16 lines shown in green on the diagrams on the following pages: 
 
Video Pointer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R12 C9 (*) R12/13 0 Hex First byte Second byte

5 4 2 1 0 9 8 7 6 5 4 3 2 1 0 0 Addr C9 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 C4

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C000 0 0

1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 C800 1 0

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 D000 2 0

1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 D800 3 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 E000 4 0

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 E800 5 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 F000 6 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 F800 R9 7 0

1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 C050 0 1

1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 C850 1 1

1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 D050 2 1

1 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 D850 3 1

1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 E050 4 1

1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 E850 5 1

1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 F050 6 1

1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 F850 R9 7 1

(*) C5 on CRTC 3, 4 in vertical adjustment period (R5)  
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CRTC 0, 1, 2 
 

Latency in HSYNC-GA

Hsync 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R1 R2 R3 R0

R12/13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 DISP-EN Off Hsync GA DISP-EN On

1 DISP-EN Off Hsync GA DISP-EN On

2 DISP-EN Off Hsync GA DISP-EN On

3 DISP-EN Off Hsync GA DISP-EN On

4 DISP-EN Off Hsync GA DISP-EN On

5 DISP-EN Off Hsync GA DISP-EN On

6 DISP-EN Off Hsync GA DISP-EN On

7 DISP-EN Off Hsync GA DISP-EN On

8 DISP-EN Off Hsync GA DISP-EN On

9 DISP-EN Off Hsync GA DISP-EN On

10 DISP-EN Off Hsync GA DISP-EN On

11 DISP-EN Off Hsync GA DISP-EN On

12 DISP-EN Off Hsync GA DISP-EN On

13 DISP-EN Off Hsync GA DISP-EN On

14 DISP-EN Off Hsync GA DISP-EN On

15 DISP-EN Off Hsync GA DISP-EN On

16 DISP-EN Off Hsync GA DISP-EN On

17 DISP-EN Off Hsync GA DISP-EN On

18 DISP-EN Off Hsync GA DISP-EN On

19 DISP-EN Off Hsync GA DISP-EN On

20 DISP-EN Off Hsync GA DISP-EN On

21 DISP-EN Off Hsync GA DISP-EN On

22 DISP-EN Off Hsync GA DISP-EN On

23 DISP-EN Off Hsync GA DISP-EN On

24 DISP-EN Off Hsync GA DISP-EN On

R6 25 DISP-EN Off Hsync GA

26 Hsync GA

27 Hsync GA

28 Hsync GA

29 Hsync GA

8 R7 30 Vsync Hsync GA

16 R3 31 Vsync Hsync GA

32 Hsync GA

33 Hsync GA

34 Hsync GA

R4 35 Hsync GA

8 36 36 Hsync GA

16 36 37 Hsync GA

24 R5 36 38 Hsync GA

CRTC 0 1 DISP-EN ON

2
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CRTC 3, 4 
 

Latency in Hsync-GA

HSYNC 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R1 R2 R3 R0

R12/13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 DISP-EN Off DISP-EN On

1 DISP-EN Off DISP-EN On

2 DISP-EN Off DISP-EN On

3 DISP-EN Off DISP-EN On

4 DISP-EN Off DISP-EN On

5 DISP-EN Off DISP-EN On

6 DISP-EN Off DISP-EN On

7 DISP-EN Off DISP-EN On

8 DISP-EN Off DISP-EN On

9 DISP-EN Off DISP-EN On

10 DISP-EN Off DISP-EN On

11 DISP-EN Off DISP-EN On

12 DISP-EN Off DISP-EN On

13 DISP-EN Off DISP-EN On

14 DISP-EN Off DISP-EN On

15 DISP-EN Off DISP-EN On

16 DISP-EN Off DISP-EN On

17 DISP-EN Off DISP-EN On

18 DISP-EN Off DISP-EN On

19 DISP-EN Off DISP-EN On

20 DISP-EN Off DISP-EN On

21 DISP-EN Off DISP-EN On

22 DISP-EN Off DISP-EN On

23 DISP-EN Off DISP-EN On

24 DISP-EN Off DISP-EN On

R6 25 DISP-EN off

26

27

28

29

8 R7 30 Vsync 

16 R3 31 Vsync

32

33

34

R4 35

8 35

16 35

24 R5 35

DISP-EN on
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7 SYNCHRONIZATION 

7.1  PRINCIPLES 
The CRTC is responsible for determining the memory addresses to be displayed, which it 
communicates to the GATE ARRAY, which reads the data and manages it according to its 
parameters, to generate colourful and various width pixel sizes. 
  
The CRTC also sends VSYNC and HSYNC signals to GATE ARRAY, which uses them to trigger and 
send a composite signal to the monitor.  

 When the GATE ARRAY receives a HSYNC signal, there is almost 2 μs of latency before 
the horizontal synchronisation of the monitor begins. 

 When the GATE ARRAY receives a VSYNC signal, there are 2 “HSYNC lines” before the  
vertical synchronisation of the monitor begins. 

  
On a topic that deals with the differences between microsecond scale circuit models, it is 
important to spatialize the instructions in relation to what is displayed. 
  
Several difficulties are associated with this approach:  

 Situate a Z80A instruction in relation to the internal workings of the CRTC, as delays 
may exist between the update of internal records and the time when characters are 
displayed.  

 Determine when, during an Input-Output instruction, the modification of a CRTC 
register is effective and considered. 

  
The same type of issue exists for Z80A instructions accessing the GATE ARRAY directly, or when 
updating the RAM read by the GATE ARRAY. 
 To "synchronize" the instructions, this document uses a single point of reference to which 
the instructions of the Z80A affecting the video are aligned. 
  
This reference point is the moment when C0 is considered equal to 0 from the perspective of the 
CRTC.  
  
There is a delay in display between when the CRTC provides a video pointer, and when the GATE 
ARRAY displays the corresponding 16-bit character.   
This delay is 1 μsec. 
 
This display time lag of the GATE ARRAY with respect to the CRTC would not be a problem if the 
entirety of what is sent by the CRTC to the GATE ARRAY were always delayed by 1 μsec. 
 
But this is not always the case, especially for HSYNC signal management for machines equipped 
with CRTC’s 0, 1 and 2.  
  
When this document details  Z80A instructions aligned with the CRTC, C0 counter is presented on 
2 "time-line".  The one with respect to C0 from the CRTC reference point and the one with respect 
to the display (pixels, ...) by the GATE ARRAY. 
It will be a question of "C0 from Vsync" (or C0vs) and/or "C0 from GA" when the assignment of 
the CRTC's registers is decisive in relation to the display of characters by the GATE ARRAY. 
The CRTC communicates with Z80A in two different ways (outside of the CRTC 1 read or status 
registers):  
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 Via the CRTC VSYNC pin that is connected directly to the 0 bit of port B of PPI 8255. 
 Via the Z80A interrupts produced by the GATE ARRAY from the CRTC's HSYNC signals. 

7.2  VSYNC SYNCHRONIZATION 
  
The CRTC generates a signal on its VSYNC pin when C4 reaches R7. 
This is a reliable indicator to then base any other synchronization method. 
 
The bit 0 of port B of the PPI ("standard" &F5 input-output address) changes to 1 as soon as the 
VSYNC signal is produced by the CRTC. 
 
In general, programs make "loops" to wait for this bit to go to 1, which leads to a margin of error 
related to the duration of the instructions of the waiting code. 
 
This margin exists even if the "loops" code is "aligned" through an interrupt generated from a 
HALT statement located before the waiting loop (the margin is then just "stable"). 
 
However, it is perfectly possible to write code capable of setting Z80A code to the microsecond 
that corresponds to C4=R7 and C0=C9=0. 
 
All data shown in this document will use this C0vs reference point. It is of course possible to use 
the interrupt system as a new reference point. 
 
Chapter 26.6.6 summarizes interruptions according to the different CRTC’s. 
It should not be forgotten that interruptions are dependent on the differences between the 
CRTC/GATE ARRAY couples of the different machines.  
 
The principle of the C0vs synchronization code is to place a VSYNC wait in a period where the 
indicator at the PPI level is not yet set to 1. 
 
It is then a question of deriving this microsecond code by microsecond at each frame, thanks to a 
period of 19969 microseconds. This scan is 1 microsecond longer than that produced by the 
CRTC (with adequate and standard programming of 312 lines of 64 μsec).  
 
This can be seen as a "drift" of the code microsecond-by-microsecond. 
 
The Input-Output instruction, which reads port B of the PPI, is the IN A,(C) instruction which lasts 
4 μsec. It is on the 4th μsec of the IN A,(C) instruction that A is updated when the bit 0 of port B 
changes to 1.  
 
The C0vs reference point is calculated in this way and all the information given in this document 
is correlated with this measurement, which is a single reference point. 
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Schematic description of this principle : 
 

C4=R7

R0 C9=0

C0: 58 59 60 61 62 63 0 1 2 3 4 5 …

IN A,(C) RRA JR C,sync_first

1 2 3 4 5 6 7 wait 19969-7 µsec >>

ppi.portb.0= 0

>> IN A,(C) RRA JR C,sync_first

ppi.portb.0= 0 wait 19969-7 µsec >>

>> IN A,(C) RRA JR C,sync_first

ppi.portb.0= 0 wait 19969-7 µsec >>

>> IN A,(C) RRA JR C,sync_first

ppi.portb.0= 1

sync_first: 1 2 3 4 5 wait 19968-5 µsec

Frame 19968 µsec  
 
Synchronisation code : 
;======================================================================================= 
;     
; Vsync synchronization   
; At the end of the synchronization call, the 1st usec is the one on which the CRTC has positioned the Vsync signal   
; Principle   
;   - wait for the vsync signal with the margin of error  
;   - wait for the vsync signal to finish  
;    - derive the vsync test with a loop during 19968+1 us 
;   - as soon as the vsync is detected by the test, it is necessary to subtract the duration of the test  
;     
;======================================================================================== 
sync_vbl               
  di             
  ld b,#f5  ; Wait VBL flag =1          
  ld hl,19968-23 ; Nop counter  (minus margins and wait management)     
  ld de,-11             
sync_wvblon1   ; Here we are waiting for the beginning of the VBL period (or we are not waiting if we were there already)
  in a,(c)  ;           
  rra  ;           
  jr nc,sync_wvblon1            
sync_wvbloff1   ; Flag Vsync CRT goes to 1 (or was already to 1)      
  in a,(c)  ; Wait for the flag to go back to 0 (End of Vsync)       

rra             
  jr c,sync_wvbloff1           
sync_wvblon2   ; We are now certain that the Vsync signal was not already in progress   
  in a,(c)  ;           
  rra  ; margin1 of 7us          
  jr nc,sync_wvblon2           
sync_wvbloff2   ; Wait for the Vsync signal to return to 0 by counting the time elapsed 
  add hl,de  ; 3  On nop2  On nop3       
  in a,(c)  ; 4 2  1       
  rra  ; 1 1  1       
  jr c,sync_wvbloff2 ; 3/2   2  3 (bcl)+3+4+1+2=15 / margin 15-5=10   
  ex de,hl  ; 1          
  call wait_usec ; 5 >> 6 + 10(margin2)        
  ;             
  ; Drift zone to wait again for the first manifestation of the flag      
  ; the in a,(c) will "go down" nop by nop (frame by frame) until the in recovers the active flag  
sync_derive_bcl              
  ld b,#f5   ; 2          
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  in a,(c)   ; 4 usec. 0.1.2.[3] (+1)       
  rra   ; 1 usec (+1)         
  jr c,sync_first  ; 2/3 (+3)         
  ld de,19969-20  ; 3          
  call wait_usec  ; 5+(19969-20)        
  jr sync_derive_bcl  ; 3 >> 20          
sync_first     ; 6 The flag has been detected at the earliest, and this since 5 usec (2+1+3) C0=R0 
     ; -1 μs to position on C0=0 
  ld de,19968-11  ; 3          
  jp wait_usec  ; 3 >> 11 >> de=19968-11        
 
;================================================================================== 
; wait "de" usec       
; 40+(((de/8)-5) x 8)+(de and 7) nop       
; nb - the call of the function is not included           
;======================================================================================== 
wait_usec:       
  ld hl,sync_adjust  ; 3  
  ld b,0   ; 2  
  ld a,e   ; 1  
  and %111   ; 2>8  
  ld c,a   ; 1  
  sbc hl,bc   ; 4  
  srl d   ; 2   
  rr e   ; 2>17  
  srl d   ; 2  
  rr e   ; 2   
  srl d   ; 2  
  rr e   ; 2>25  
  dec de   ; 2>27 8  
  dec de   ; 2>29 16  
  dec de   ; 2>31 24  
  dec de   ; 2>33 32   
  dec de        ; 2>35 40 *  
  nop   ; 1>36   
wait_usec_01       
  dec de   ; 2 -  
  ld a,d   ; 1 -  
  or e   ; 1 -  
  nop   ; 1 -  
  jp nz,wait_usec_01  ; 3 - v=(8 x DE)  
  jp (hl)   ; 1>37   
  nop   ; 1 * v=0--7  
   nop   ; 1  
   nop   ; 1  
   nop   ; 1  
   nop   ; 1  
  nop   ; 1  
  nop   ; 1  
sync_adjust       
  ret   ; 3>40 *  
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7.3  FAKE VSYNC 
 
The VSYNC signal is part of a tripartite relationship between the CRTC, GATE ARRAY and PPI. 
CRTC reports status of VSYNC pin to PPI and GATE ARRAY. 
 
The PPI 8255 is a programmable generic device interfacing circuit. 
AMSTRAD used 3 different versions of this component: 

 NEC D8255AC-5 
 NEC D8255AC-2 

 TOSHIBA TMP8255AP-5 
 

The last digit indicated is the maximum frequency of the circuit. To my knowledge there is no 
relevant test to differentiate these models. 
 
It is possible to operate the communication pins of this circuit as input or output according to 
appropriate programming. 
 
Port B of the PPI is designed on the CPC to work as input, and therefore receive information from 
the devices to which it is connected. It is possible to reprogram this port as output, by setting to 0 
the bit 1 of the control register of the PPI located at the address of I/O #F700. Writing to port B 
(#F500) a value with the bit 0=1 will therefore put pin 25 of the circuit in the high state. This 
means that the PPI will send its signal to the CRTC, which in fact will send it back to the GATE 
ARRAY, since it is also connected to it. 
 
However, I have found, like Kevin Thacker (ArnoldEmu) before me, that this FAKE VSYNC does 
not work on some CPC’s. On other CPC’s, the result is incorrect. 
 
On a CRTC 2, programmed with R2=50 and R3=14, VSYNC is in principle no longer generated. 
 
We will see later that a GHOST VSYNC is generated on this CRTC if the VSYNC condition takes 
place during HSYNC. It should therefore theoretically be possible to do this work instead of the 
CRTC by placing bit 0 from port B to 1 in the right place and for the right duration. 
 
However, if a PPI-VSYNC is activated for 1024 μsec instead of the one that would have been 
produced by the CRTC, the signal produced by the PPI is not strong enough to counter the low 
signal generated by a GHOST VSYNC. But when the CRTC moves its pin back to the low state 
(when it is already there), then the VSYNC of the PPI is then considered, and the image is 
stabilized 16 lines higher than expected. An electronics technician would certainly help me to see 
more clearly. 
 
However, it is still possible to bypass CRTC 2's GHOST VSYNC more easily, by preventing the 
VSYNC condition to occur during HSYNC and by updating R7 with C4 right after the end of HSYNC 
 (See Chapter 16.4.3, page 159). 
 
WARNING : I don't really know the potential "technical" consequences of sending a signal in the 
opposite direction to the one intended. Having said that, the risk seems quite low since, for 
several years, many CPC’s have contained several CRTC’s welded on top of one another in an orgy 
of tin. The passive CRTC(s) then taking signals from the active CRTC. In the worst case, a CRTC is 
worth (still) less than €10. 
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A bit of history 
This is not the first time that an input port has been used as output on the CPC. The older 
ones will probably remember the download kit which allowed for the retrieval of (paid) 
programs via a telephone connection connected to the Minitel (I do not know if this system 
was used with Prestel in U.K.).  
 
The cable of one of these kits was connected from the Minitel socket on the CPC with its 
JOYSTICK socket, and in order to be able to manage a bidirectional exchange, the keyboard 
port was then placed in output. Keyboard lines are read through port A of the PPI, via port A 
of the AY-3-8912 (sound generator).  
 
Even if this had no consequences for the vast majority of users, I witnessed several CPC’s 
whose AY-3-8912 had "permanently lost" part of the bits of some registers of the AY. From 
memory, it seems to me that these CPCs had particularly high-pitched tones, if it comes to 
determining which bits were "ravaged". 
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8 DISPLAY, Z80A & GATE ARRAY 
The following diagrams describe in relation to some video ram update instructions by the Z80A 
and when this update is considered by the GATE ARRAY/ASIC. 
 
Instructions are localized relative to the CRTC's C0vs reference point. 
 
The RAM reading by the GATE ARRAY/ASIC for data modified by the Z80A is the same 
for all CPC’s. 

8.1  INSTRUCTION LD(HL),reg8 (2 µsec) 
 
HL=0000 reg8=#FF

C0vs 00 01 02 03 04 05 06 07 08 09

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Z80A Inst LD (HL),reg8 NOP NOP NOP NOP NOP NOP LD (HL),#00 19968-10 µsec

Displayed : 00

HL=0001 reg8=#FF

C0vs 00 01 02 03 04 05 06 07 08 09

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Z80A Inst LD (HL),reg8 NOP NOP NOP NOP NOP NOP LD (HL),#00 19968-10 µsec

Displayed : 00

HL=0002 reg8=#FF

C0vs 00 01 02 03 04 05 06 07 08 09

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Z80A Inst LD (HL),reg8 NOP NOP NOP NOP NOP NOP LD (HL),#00 19968-10 µsec

Displayed : FF

HL=0003 reg8=#FF

C0vs 00 01 02 03 04 05 06 07 08 09

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Z80A Inst LD (HL),reg8 NOP NOP NOP NOP NOP NOP LD (HL),#00 19968-10 µsec

Displayed : FF  
 

8.2  INSTRUCTION LD (aaaa),HL (5 µsec) 
 

aaaa=0004 H=#FF, L=#55 H'=0, L'=0

C0vs 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Z80A Inst LD (aaaa),HL NOP NOP NOP NOP NOP NOP EXX Ld (aaaa),HL 19968-17 µsec

Displayed : 00 00

aaaa=0005 H=#FF, L=#55 H'=0, L'=0

C0vs 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Z80A Inst LD (aaaa),HL NOP NOP NOP NOP NOP NOP EXX Ld (aaaa),HL 19968-17 µsec

Displayed : 00 00

aaaa=0006 H=#FF, L=#55 H'=0, L'=0

C0vs 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Z80A Inst LD (aaaa),HL NOP NOP NOP NOP NOP NOP EXX Ld (aaaa),HL 19968-17 µsec

Displayed : 55 00

L

aaaa=0007 H=#FF, L=#55 H'=0, L'=0

C0vs 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Z80A Inst LD (aaaa),HL NOP NOP NOP NOP NOP NOP EXX Ld (aaaa),HL 19968-17 µsec

Displayed : 55 FF

L H
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8.3 INSTRUCTION PUSH reg16 (4 µsec) 
 

SP=0004 D=#FF, E=#55 H=0, L=0, aaaa=0003

C0vs 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Z80A Inst PUSH DE NOP NOP NOP NOP NOP NOP NOP NOP Ld (aaaa),HL 19968-17 µsec

Displayed : 00 00

SP=0005 D=#FF, E=#55 H=0, L=0, aaaa=0004

C0vs 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Z80A Inst PUSH DE NOP NOP NOP NOP NOP NOP NOP NOP Ld (aaaa),HL 19968-17 µsec

Displayed : 00 FF

D

SP=0006 D=#FF, E=#55 H=0, L=0, aaaa=0005

C0vs 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Z80A Inst PUSH DE NOP NOP NOP NOP NOP NOP NOP NOP Ld (aaaa),HL 19968-17 µsec

Displayed : 00 FF

D

SP=0007 D=#FF, E=#55 H=0, L=0, aaaa=0006

C0vs 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Z80A Inst PUSH DE NOP NOP NOP NOP NOP NOP NOP NOP Ld (aaaa),HL 19968-17 µsec

Displayed : 00 FF

D

SP=0008 D=#FF, E=#55 H=0, L=0, aaaa=0007

C0vs 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Video Ptr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Z80A Inst PUSH DE NOP NOP NOP NOP NOP NOP NOP NOP Ld (aaaa),HL 19968-17 µsec

Displayed : 55 FF

E D
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9 GATE ARRAY 
 
On the CPC, there are 5 models of identified GATE ARRAY. One of the functions of the circuit is to 
display the pixels depending on the graphical mode and the colour defined for each ink. 
 

 40007 models (version 1: Ferranti Matrix ULA20RA023, version 2: Ferranti Matrix 
ULA16RA023) and 40008 (version 2) are pin compatible. It can be noted that there are 
different markings of the 40007, also available under 40007-4 or 40007-4x. These 
models are often mounted with a heatsink spread with thermal paste on motherboards. 

 The 40010 model exists under 2 versions (1st version 37aa (Matrix LSI HSG3170) and 
2nd version 36aa (matrix LSI HSG3130, 23% smaller)). Thanks to Gérald VINCENT for 
this information. 

 ASIC 40226 is used on the low-cost CPC (CRTC 4). 
 ASIC 40489 (CRTC 3) is used on CPC + and GX 4000. 

 
AMSTRAD has created an impressive array of different motherboards. This implies that these 3 
components can be found on some 464 and 6128 models. I did not see a motherboard of 664 
capable of supporting a 40007/40008. Finally, the component is always mounted on a bracket. 
 

Model Gate Array Nb capacity 40007 40008 40010 

464 1    

464 2    
664 1    

6128 1    

6128 1    
6128 2    

 
 
Note 1: Chapter 3.2.2 of WEKA binders contain an error. The pins of the 40007/40008 are not 
compatible with those of the 40010. 
 
Note 2 : The models of 6128 with a single location equipped with a 40007 are quite rare 
(MC0057A motherboards from mid-1988). The gate array is covered with a heat sink.  
 
In general, there is a large amount of 464’s equipped with various models. 
The 664’s are mainly equipped with 40008 and 40010. 
The 6128’s are mostly equipped with 40010 version 36AA. 
 
Contrary to popular belief, there are many identifiable differences between these components. 
The 40007/40008 seems to be in advance of 1/16 MHz on the 40010 when it processes the bits of 
the byte fetched from VRAM. 
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9.1 PIXELS 
 
The GATE ARRAY/ASIC is responsible for converting the memory read by the CRTC into pixels.
     

It performs this operation by considering both parameters: the graphics mode and the 
colour associated with the pixel to be displayed.    

 
This document is not devoted to the GATE ARRAY in detail, but it should be remembered that the 
CPC has 4 graphic modes, of which 3 are "official".    
 
The graphic mode determines the horizontal size of a pixel (based on the number of colours that 
pixel can take).    
 
A pixel can be encoded on 1, 2 or 4 bits.  
A pixel occupying 1 bit is the finest resolution that GATE ARRAY can produce. 
 

Mode VRAM BYTE Displayed Pixels Definition

0 A0 B0 A2 B2 A1 B1 A3 B3 A3 A2 A1 A0 B3 B2 B1 B0 2 pixels (16 colors)

1 A0 B0 C0 D0 A1 B1 C1 D1 A1 A0 B1 B0 C1 C0 D1 D0 4 pixels (4 colors)

2 A0 B0 C0 D0 E0 F0 G0 H0 A0 B0 C0 D0 E0 F0 G0 H0 8 pixels (2 colors)
3 A0 B0 x x A1 B1 x x 0 0 A1 A0 0 0 B1 B0 2 pixels (4 colors) 

Bit Nb: 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8

A 17th colour, stored in the GATE ARRAY, is displayed when BORDER is activated 
 
This pixel coding represents an index in a table containing 5-bit colour-coded colours. 
  

        INKR COLOUR     
Colour Index 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 0 C1 C1 C1 C1 C1 

0 0 0 1 0 1 0 C2 C2 C2 C2 C2 

0 0 1 0 0 1 0 C3 C3 C3 C3 C3 

0 0 1 1 0 1 0 C4 C4 C4 C4 C4 

0 1 0 0 0 1 0 C5 C5 C5 C5 C5 

0 1 0 1 0 1 0 C6 C6 C6 C6 C6 

0 1 1 0 0 1 0 C7 C7 C7 C7 C7 

0 1 1 1 0 1 0 C8 C8 C8 C8 C8 

1 0 0 0 0 1 0 C9 C9 C9 C9 C9 

1 0 0 1 0 1 0 C10 C10 C10 C10 C10 

1 0 1 0 0 1 0 C11 C11 C11 C11 C11 

1 0 1 1 0 1 0 C12 C12 C12 C12 C12 

1 1 0 0 0 1 0 C13 C13 C13 C13 C13 

1 1 0 1 0 1 0 C14 C14 C14 C14 C14 

1 1 1 0 0 1 0 C15 C15 C15 C15 C15 

1 1 1 1 0 1 0 C16 C16 C16 C16 C16 
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When the GATE ARRAY displays its pixels, it is too "fast" for those of MODE 2. 
    
Indeed, on gate arrays 40007, 40008, 40010 and ASIC 40226 (CRTC 4), pixels in mode 2 are 
displayed one pixel earlier than for other graphics modes. 
    
They are displayed in "advance" of 1/16 μsec (0.0625 μsec). 
    
In other words, the BORDER "stops" 1 pixel earlier on a line in mode 2 and starts 1 pixel earlier 
when C0=R1 (if you have not changed graphics mode during the line). 
    
Since it is possible to change the graphic mode between each line and/or during a line, this must 
be considered if it is necessary to align pixels displayed in different graphic modes. 
    
ASIC 40489 of the CPC+ is not affected by this discrepancy.   
Whatever the graphic mode on this machine, the pixels are aligned. 
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9.2 COLOURS 
 
When the colour table (ink colour and border colour) is updated, the consideration of this colour 
change is different dependent on the CRTC version. 
 
However, the time when the update takes place is the same regardless of the mode. 

9.2.1 BORDER AND GRAPHIC MODE 2 
 
On some CPC’s, the colour update of the border when the CPC is in graphical mode 2 can have 
a visual incidence. Indeed, two pixels from another colour may appear at the beginning and at the 
end of the µsecond where the colour changes. 
 
This problem is linked to a power fault that affects the gate array or the resistors and capacitors 
that surround it to generate colours, but nevertheless I mention it here as this is an issue on a 
significant number of CPC’s. It does not depend on the CRTC, nor the GA model, the phenomenon 
which has been observed on one GA 40010 (28818 / 36AA) but not on another of the same 
reference. Finally, fiddling with the power connector to establish a more direct power contact 
mechanically causes the parasitic pixels to disappear. 
 
Some "redundant" gate array colours (beyond 27) may have a different effect from their 
"counterpart" colours in the palette, as the parasitic pixels appear (or not). It is useful to recall 
here that these colours are not strictly identical to their counterpart in the palette, because of the 
method of generating the colours of the CPC, based on resistance sets and high impedance. 

9.2.2 SPEED OF PROCESSING  
 
The following two pages of diagrams describe how different instructions which update the colour 
of an ink are processed and how the GATE ARRAY/ASIC takes this into account when displaying 
its pixels. 
 
This colour on the diagrams indicates which pixels according to the mode are affected by the 
colour change. 
  
Instructions are calibrated according to C0vs calculated from the VSYNC reference point. 
 
WARNING :  
It should not be forgotten that it is the display of pixels in mode 2 that starts earlier than for other 
modes. Updating the colour of an ink, on the other hand, is considered in the same way 
regardless of the graphic mode. 
 
The colour therefore changes on the 2nd pixel of a byte in mode 2, but on the pixels 0 of the 
bytes processed for the other graphic modes. 
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CRTC 0, 1, 2 / GATE ARRAY 40010
Z80a instr. OUTI on Gate Array Port. Value on (HL) is VC (010ccccc)
C0 from Vsync 06 07 08 09 10 11

C0 Disp by GA 05 06 07 08 09 10

Byte Offset (0.5 µsec) 10 11 12 13 14 15 16 17 18 19 20 21

Pixel Mode 0, 3 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Pixel Mode 1 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

Byte Offset (0.5 µsec) 10 11 12 13 14 15 16 17 18 19 20 21

Pixel Mode 2 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

Z80a instr. OUT (C),r8 on Gate Array Port with r8=010ccccc, color update in the ink of the vram
C0 from Vsync 06 07 08 09 10 11

C0 Disp by GA 05 06 07 08 09 10

Byte Offset (0.5 µsec) 10 11 12 13 14 15 16 17 18 19 20 21

Pixel Mode 0 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Pixel Mode 1 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

Byte Offset (0.5 µsec) 10 11 12 13 14 15 16 17 18 19 20 21

Pixel Mode 2 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

Z80a instr. OUT (n),A on Gate Array Port.
C0 from Vsync 06 07 08 09 10 11

C0 Disp by GA 05 06 07 08 09 10

Byte Offset (0.5 µsec) 10 11 12 13 14 15 16 17 18 19 20 21

Pixel Mode 0 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Pixel Mode 1 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

Byte Offset (0.5 µsec) 10 11 12 13 14 15 16 17 18 19 20 21

Pixel Mode 2 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

 
CRTC 3, 4 / ASIC 40489, 40226
Z80a instr. OUTI on Gate Array Port. Value on (HL) is VC (010ccccc)
C0 from Vsync 06 07 08 09 10 11

C0 Disp by GA 05 06 07 08 09 10

Byte Offset (0.5 µsec) 10 11 12 13 14 15 16 17 18 19 20 21

Pixel Mode 0 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Pixel Mode 1 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

Pixel Mode 2 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

Z80a instr. OUT (C),r8 on Gate Array Port with r8=010ccccc, color update in the ink of the vram
C0 from Vsync 06 07 08 09 10 11

C0 Disp by GA 05 06 07 08 09 10

Byte Offset (0.5 µsec) 10 11 12 13 14 15 16 17 18 19 20 21

Pixel Mode 0 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Pixel Mode 1 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

Pixel Mode 2 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

Z80a instr. OUT (n),A on Gate Array Port.
C0 from Vsync 06 07 08 09 10 11

C0 Disp by GA 05 06 07 08 09 10

Byte Offset (0.5 µsec) 10 11 12 13 14 15 16 17 18 19 20 21

Pixel Mode 0 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Pixel Mode 1 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 72 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

Pixel Mode 2 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
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9.3  GRAPHIC MODE  
 

9.3.1 GENERAL 
 
A HSYNC signal provided by the CRTC is composed of several periods within the GATE ARRAY. 
 
A period, which can be called HSYNC-GA, has a maximum duration capped at 6 μsec and cannot 
exceed the value defined in R3. 
 
For all CPCs without exception (CRTC’s 0 to 4) a HSYNC of at least 2 μsec is required for the 
graphic mode update. 
 
The update of the internal register containing the mode is effective on the 3rd μsecond of the 
Z80A instruction of I/O OUT (C),R8 to the GATE ARRAY  
 
The minimum "latency" period for the GATE ARRAY to generate a C-HSYNC signal is very slightly 
less than 2 µsec (between 1.8750 and 1.9375c. µs).. 
 
If the HSYNC-GA is programmed to 2 μsec (via the CRTC's R3l programming), then a very short 
C-HSYNC signal is produced. On CRTC 0 and 1, it lasts 2 or 3 pixel-M2 (1 pixel-
M2=0.0625 µsec). On CRTC 2 it lasts 1 or 2 pixel-M2. However, this signal is much too 
short to be detected by the monitor. This setting does not prompt the monitor to give up its 
guts and allows graphics mode to be changed mid-line without affecting horizontal 
synchronization. 
 
HSYNC is considered more quickly by the GATE ARRAY on CRTC’s 0, 1 and 2, than on the ASIC’s 
of CRTC’s 3 and 4. ASIC’s delay HSYNC by 1 μsec, as they do for character display. 
 
On the VSYNC reference point principle, the following diagrams describe how a mode change is 
accounted for by a Z80A OUT(C),r8 instruction before and during HSYNC. 
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9.3.2 CRTC 0, 1, 2 
 
CRTC-R2=46 / CRTC-R3=14 (HSYNC size) 

R2

C0 from Vsync 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C0 disp by GA 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Hsync GA: Monitor Sync Résultat OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 2 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 2 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 2 OUT GA, MODE 2

Characters displayed

Hsync "displayed"

 

9.3.3 CRTC 3, 4 
 
CRTC-R2=46 / CRTC-R3=14 (HSYNC size) 

R2

C0 from Vsync 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C0 disp by GA 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Hsync GA: Monitor Sync Résultat

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 0 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 2 OUT GA, MODE 2

MODE 2 Rq OUT GA, MODE 0 >> MODE 2 OUT GA, MODE 2

Characters displayed

Hsync "displayed"
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9.3.4 MODE SPLITTING 

9.3.4.1 GENERAL 
A Pixel-M2 designates a pixel whose horizontal size is that of one pixel in graphic mode 2. 
A pixel in graphic mode 0 or 3 is composed of 4 Pixel-M2. 
A pixel in graphic mode 1 is composed of 2 Pixel-M2. 
 
It is possible to change the graphics mode during a line as long as this change of mode precedes 
a HSYNC programmed with a length R3>1. 
 
When R3 is programmed with the value 2, the change of mode carried out by the GATE ARRAY 
occurs after the display has been restored on the CRTC’s 0, 1, 2 and 4. (to be verified for CRTC 
3). 
 
On CRTC’s 0, 2 and 4, when the display is reactivated by the GATE ARRAY (R3=2), 1 Pixel-M2 is 
however displayed in the previous graphics mode. On CRTC 1, the reactivation of the 
display corresponds exactly to the start of the mode change by the GA, which does not allow you 
to take advantage of a nice mode 2 pixel of the previous graphics mode. 
 
On CRTC’s 0, 1 and 2, the GATE ARRAY switches the mode update to the 6th pixel mode 2 (i.e. 
the 3rd pixel mode 1, the 2nd pixel mode 0). 
 
On the CRTC 4, the GATE ARRAY switches the mode change to the 4th pixel mode 2 (i.e. the 2nd 
pixel mode 1, the middle of the 1st pixel mode 0). 
 
Given that mode update occurs during the processing of the byte read in ram, the 
algorithm for determining the PEN by the GA switches during processing. Consequently, the 
calculated PENs are distorted for the rest of the pixels to be displayed in the byte. They are partly 
composed of the rotations performed for the previous mode. 
 
It is also possible to modify, on CRTC’s 0, 1 and 2, the “HSYNC non-display” zone via techniques 
called R2.JIT and R3.JIT. (JIT = “Just In Time”). 
 
R2.JIT reduces the non-display area of the HSYNC from the left and R3.JIT stops the HSYNC 
0.25 µsec after its scheduled end. (See Chapters 15.3 and 14.5.4 for more information). 
 
In the context of a graphics mode change, the R3.JIT technique does not shorten the period 
required for the graphics mode update. (You didn't think I wasn't going to try...). Indeed, if this 
technique is used on the 2nd µsec of the HSYNC, the change of graphics mode does not take 
place. The change of MODE is considered only on an R3.JIT during the 3rd µsec. This implies a 
non-display time of 2.25 µsec for a mode update. This nevertheless has the advantage of moving 
the moment when a “mixed” mode 2 pixel is visualized in another graphic mode.  
 
The R3.JIT is also of great interest insofar as it allows the modification of the duration of 
the “official” 4 µsec of the C-HSYNC monitor with a gap of 0.25 µsec instead of the 0.5 
µsec used “classically” to perform horizontal scrolling at byte level (These 2 values are not exact 
because of the GA CSYNC algorithm. See Chapter 16.2.3 page 155).  
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The display shutdown delay achieved with R2.JIT does not change anything when the display is 
reactivated, unlike the R3.JIT. The GAP between R2.JIT and R2.NJIT is 3 Pixel-M2 (0.1875 
µsec) on CRTC 1 and 4 Pixel-M2 on CRTC’s 0 and 2 (0.25 µsec). 

9.3.4.2 HSYNC UNDER THE MICROSCOPE 
 
The diagrams on the following pages indicate, according to the CRTC’s: 
 

  The moment when the display stops when a HSYNC has been requested (with however 
a tolerance of ½ Pixel-M2 (0.03125 µsec)) using R2.JIT or R2.NJIT. 

 
 The gap in Pixel-M2 between an R2.JIT and R2.NJIT technique. 

 
 The moment when the display resumes for 1 Pixel-M2 (area indicated in yellow). 

 

 When the graphics mode changes (shown in pink). 
 

 When the display stops when a HSYNC is stopped using R3.JIT. 
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CRTC 0

R2. JIT VRAM VRAM +1 VRAM +2 VRAM + 3 VRAM + 4

MODE 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

MODE 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

MODE 0,3 0 1 2 3 4 5 6 7 8 9

DISPLAY HSYNC COLORLESS MODE SWITCH

JIT/NJIT GAP 1 2 3 4

R2. NJIT VRAM VRAM +1 VRAM +2 VRAM + 3 VRAM + 4

MODE 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

MODE 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

MODE 0,3 0 1 2 3 4 5 6 7 8 9

DISPLAY HSYNC COLORLESS MODE SWITCH

R3.JIT VRAM VRAM +1 VRAM +2 VRAM + 3 VRAM + 4 VRAM + 5

MODE 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

MODE 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

MODE 0,3 0 1 2 3 4 5 6 7 8 9 10

DISPLAY HSYNC COLORLESS MODE SWITCH

=ALLOWANCE

 
 
 
 
CRTC 2

R2. JIT VRAM VRAM +1 VRAM +2 VRAM + 3 VRAM + 4

MODE 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

MODE 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

MODE 0,3 0 1 2 3 4 5 6 7 8 9

DISPLAY HSYNC COLORLESS MODE SWITCH

JIT/NJIT GAP 1 2 3 4

R2. NJIT VRAM VRAM +1 VRAM +2 VRAM + 3 VRAM + 4

MODE 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

MODE 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

MODE 0,3 0 1 2 3 4 5 6 7 8 9

DISPLAY HSYNC COLORLESS MODE SWITCH

R3.JIT VRAM VRAM +1 VRAM +2 VRAM + 3 VRAM + 4 VRAM + 5

MODE 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

MODE 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

MODE 0,3 0 1 2 3 4 5 6 7 8 9 10

DISPLAY HSYNC COLORLESS MODE SWITCH

=ALLOWANCE
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CRTC 1
R2. JIT VRAM VRAM +1 VRAM +2 VRAM + 3 VRAM + 4

MODE 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

MODE 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

MODE 0,3 0 1 2 3 4 5 6 7 8 9

DISPLAY HSYNC COLORLESS MODE SWITCH

JIT/NJIT GAP 1 2 3

R2. NJIT VRAM VRAM +1 VRAM +2 VRAM + 3 VRAM + 4

MODE 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

MODE 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

MODE 0,3 0 1 2 3 4 5 6 7 8 9

DISPLAY HSYNC COLORLESS MODE SWITCH

R3.JIT VRAM VRAM +1 VRAM +2 VRAM + 3 VRAM + 4 VRAM + 5

MODE 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

MODE 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

MODE 0,3 0 1 2 3 4 5 6 7 8 9 10

DISPLAY HSYNC COLORLESS MODE SWITCH

=ALLOWANCE

 

 

CRTC 4

R2. NJIT VRAM +1 VRAM +2 VRAM + 3 VRAM + 4 VRAM + 5 VRAM + 6

MODE 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

MODE 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

MODE 0,3 0 1 2 3 4 5 6 7 8 9 10 11

DISPLAY HSYNC COLORLESS MODE SWITCH

=ALLOWANCE
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9.3.4.3 CRTC 0, 1, 2 : COOKING OF PIXELS WITH R3.NJIT 
 
When the GATE ARRAY switches from one graphics mode to another mode, it is already 
processing one-byte data according to the previous mode, and result obtained reflects its internal 
logic. 
 
With R2.NJIT, the display stops: 

 For 2 µsec on CRTC’s 0 and 1 (32 Pixel-M2). 

 Lasting 2.0625 µsec on CRTC 2 (33 Pixel-M2). 
With R2.JIT, the display stops: 

 Lasting 1.75 µsec on CRTC 0 (28 Pixel-M2). 
 Lasting 1.8125 µSec on CRTC’s 1 and 2 (29 Pixel-M2). 

 
On CRTC’s 0 and 2, the display is restored 1 Pixel-M2 before the GATE ARRAY changes the 
graphics mode. The 30th Pixel-M2 displayed therefore has the characteristics of the 
previous mode, for its fraction corresponding to 1 Pixel-M2. 
 
On CRTC 1, it should be considered that the “Hsync No Disp” zone indicated on the diagrams is 
longer by 1 Pixel-M2. The first Pixel-M2 obtained when the display is activated is only displayed for 
CRTC’s 0, 2 and 4. CRTC 1 does not display this pixel. 
This additional pixel is symbolized in purple on the following diagrams. 
 
There is a notable difference between the GATE ARRAY 40007/40008 and the 40010. Indeed, in 
certain situations, when bits of the data in VRAM have already been used in the calculation of a 
colour number of the pixels of the starting mode, these bits are considered to be 0 (GA 40010) or 
1 (GA 40008) for the calculation of the new graphic mode colour numbers. 

9.3.4.3.1 MODE 2 TO MODE 0.1.2.3 
 
On a line displayed in MODE 2, the data display resumes: 

 On CRTC’s 0 and 2, from the 5th Pixel-M2 of the 5th VRAM byte. 
 On CRTC 1, from the 6th Pixel-M2 of the 5th VRAM byte. 

 
On CRTC’s 0 and 2, the first pixel displayed is in MODE 2 (PEN 1 or 0). 
 
Since the MODE 2 pixels are "ahead" of the pixels of the other modes, the GATE ARRAY will 
display 4 new Pixel-M2 after the 5th, unless the mode has not changed. 
This represents the display of 9 M2-pixels from a single byte. 
 
The GATE ARRAY considers that its bit counter is not at 0 but at 5. 
 
From the 6th bit of the byte read in VRAM, it "starts" processing the calculation of the colour 
number as if they were the 1st bits of a byte. Thus it considers bits b2,b1 and b0 of the byte in 
VRAM as those it would have encountered in bits b7,b6 and b5 of this same byte. 
 
Bits missed by the GATE ARRAY 40010 are considered 0, which limits colour number 
combinations: 

 MODE 2 to MODE 0: Colour numbers 0, 1, 4, 5 
 MODE 2 to MODE 1: Colour numbers 0, 1 
 MODE 2 to MODE 3: Colour numbers 0, 1 

 



V1.5 – 03.2023 – Page 56 / 281 
 

The table below describes the interpretation by the GATE ARRAY 40010 of the VRAM byte 
processed when the redisplay is activated, according to the new graphics mode requested. 
 

Mode to Mode VRAM Byte GA 40010 : Displayed Pixels

2 0 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (1) 0 b0 0 b2

2 1 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (2) 0 b2 0 b1

2 2 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (3) b2 b1 b0

2 3 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (4) 0 0 0 b2

1 2 3 4 5 6 7 8 9

 
GA 40010 GA 40010

(1) (2)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 E0 F0 G0 H0 A0 B0 C0 D0 E0 F0 G0 H0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 C0 D0 A1 B1 C1 D1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Hsync No Disp Hsync No Disp

B 0 B3 0 B1 B 0 B1 0 C1

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

 
GA 40010 GA 40010

(3) (4)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 E0 F0 G0 H0 A0 B0 C0 D0 E0 F0 G0 H0

7 6 5 4 3 2 1 0 A0 B0 A2 B2 A1 B1 A3 B3

7 6 5 4 3 2 1 0

Hsync No Disp Hsync No Disp

B F0 G0 H0 B 0 0 0 B1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9

 
The GATE ARRAY 40007 and 40008 are ahead of 0.0625 µsec compared to the 40010 when they 
recover the bits allowing for the constitution of the colour number. Missed bits are considered to 
be 1, which limits colour number combinations: 

 MODE 2 to MODE 0: Colour numbers 10, 11, 14, 15 
 MODE 2 to MODE 1: Colour numbers 2, 3 
 MODE 2 to MODE 3: Colour numbers 2, 3 

 
The table below describes the interpretation by the GATE ARRAY 40007 and 40008 of the 
VRAM byte processed when the redisplay is activated, according to the new graphics mode 
requested. 
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Mode to Mode VRAM Byte GA 40007/8 : Displayed Pixels 

2 0 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (1) 1 b1 1 b3

2 1 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (2) 1 b3 1 b2

2 2 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (3) b2 b1 b0

2 3 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (4) 0 0 1 b3

1 2 3 4 5 6 7 8 9

 
GA 40007 / GA 40008 GA 40007 / GA 40008

(1) (2)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 E0 F0 G0 H0 A0 B0 C0 D0 E0 F0 G0 H0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 C0 D0 A1 B1 C1 D1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Hsync No Disp Hsync No Disp

B 1 A3 1 A1 B 1 A1 1 B1

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

 
GA 40007 / GA 40008 GA 40007 / GA 40008

(3) (4)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 E0 F0 G0 H0 A0 B0 C0 D0 E0 F0 G0 H0

7 6 5 4 3 2 1 0 A0 B0 A2 B2 A1 B1 A3 B3

7 6 5 4 3 2 1 0

Hsync No Disp Hsync No Disp

B F0 G0 H0 B 0 0 1 A1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9

 

9.3.4.3.2 MODE 0 TO MODE 0.1.2.3 
 
On a line displayed in MODE 0, the data display resumes: 

 On CRTC’s 0 and 2, from the 4th Pixel-M2 of the 5th VRAM byte. 
 On CRTC 1, from the 5th Pixel-M2 of the 5th VRAM byte. 

 
On CRTC’s 0 and 2, the first Pixel-M2 displayed is the last of the 4 pixel-M2 of the MODE 0 
pixel displayed in its original colour (i.e. a colour number between 0 and 15). In other words, 
only ¼ of the MODE 0 pixel is displayed before the GATE ARRAY displays the following pixels. 

 
If MODE 2 is the new mode required, then the GATE ARRAY will display 3 new Pixel-M2’s after the 
4th which represents in total the display of 7 pixels-M2 from the same byte. 
 
If the new required mode is not MODE 2 then the GATE ARRAY will display 4 new Pixel-M2’s after 
the 4th. 
 
Finally, if the new mode required is 1 or 2, then the GATE ARRAY, to calculate the new colour 
numbers, "reuses" bits already used to calculate the colour number of the previous pixel. 
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The table below describes the interpretation by the GATE ARRAY 40007, 40008 and 40010 of the 
VRAM byte processed when the redisplay is activated, according to the new graphic mode 
requested. 
 
 
 

Mode to Mode VRAM Byte Displayed Pixels

0 0 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (1) b0 b4 b2 b6

0 1 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (2) b2 b6 b1 b5

0 2 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (3) b6 b5 b4

0 3 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (4) 0 0 b2 b6

1 2 3 4 5 6 7 8

 
 

GA 40008 & 40010 GA 40008 & 40010

(1) (4)

A3 A2 A1 A0 A3 A2 A1 A0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 A2 B2 A1 B1 A3 B3

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 x x A1 B1 x x

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Hsync No Disp Hsync No Disp

A B3 B2 B1 B0 A 0 0 B1 B0

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

 
GA 40008 & 40010 GA 40008 & 40010

(2) (3)

A3 A2 A1 A0 A3 A2 A1 A0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 A2 B2 A1 B1 A3 B3

A0 B0 C0 D0 A1 B1 C1 D1 A0 B0 C0 D0 E0 F0 G0 H0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Hsync No Disp Hsync No Disp

A B1 B0 C1 C0 A B0 C0 D0

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7

 
When switching from MODE 0 to mode 1 or 2, the common use of the data bits of the byte read 
in VRAM creates a constraint by linking the colour numbers of the Pixel-M2 displayed in position 4 
with that of the pixels located after. 

 MODE 0 to MODE 1: The colour number of the last pixel in MODE 1 corresponds to 
bits 3 and 4 of the colour number of the 1st pixel in MODE 0. 
- 1st pixel-M2 N° colours 0,1,2,3 = 2nd pixel MODE 1 with colour number 0. 
- 1st pixel-M2 N° colours 4,5,6,7 = 2nd pixel MODE 1 with colour number 1. 
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- 1st pixel-M2 N° colours 8,9,10,11 = 2nd pixel MODE 1 with colour number 2. 
- 1st pixel-M2 N° colours 12,13,14,15 = 2nd pixel MODE 1 with colour number 2. 

 MODE 0 to MODE 2: The colour number of the 2nd pixel in MODE 2 corresponds to bit 
2 of the colour number of the 1st pixel in MODE 0. 
- 1st pixel-M2 No. of colours 0..3, 8..11 = 2nd pixel MODE 2 of colour 0 
- 1st pixel-M2 No. of colours 4..7, 12..15 = 2nd pixel MODE 2 of colour 1 

9.3.4.3.3 MODE 1 TO MODE 0.1.2.3 
On a line displayed in MODE 1, the data display resumes: 

 On CRTC’s 0 and 2, from the 4th Pixel-M2 of the 5th VRAM byte. 
 On CRTC 1, from the 5th Pixel-M2 of the 5th VRAM byte. 

 
On CRTC’s 0 and 2, the first Pixel-M2 displayed is the last of the 2 pixel-M2 of the MODE 1 
pixel displayed in its original colour (i.e. a colour number between 0 and 3). In other words, only 
half of the MODE 1 pixel is displayed before the GATE ARRAY displays the following pixels. 
 
If MODE 2 is the new requested mode, then the GATE ARRAY will display 3 new Pixel-M2’s after 
the 4th, which represents in total the display of 7 pixel-M2’s from the same byte. 
If the new required mode is different from MODE 2 then the GATE ARRAY will display 4 new Pixel-
M2’s after the 4th. 
 
The following table describes the interpretation by the GATE ARRAY 40007, 40008 and 40010 of 
the VRAM byte processed when the display is reactivated, according to the new graphics mode 
requested. 
 

Mode to Mode VRAM Byte Displayed Pixels

1 0 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (1) 0/1 b3 b1 b5

1 1 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (2) b1 b5 b0 b4

1 2 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (3) b5 b4 b3

1 3 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (4) 0 0 b1 b5

1 2 3 4 5 6 7 8  
 

GA 40010 / GA 40008 / GA 40007 GA 40010 / GA 40008 / GA 40007

(1) (2)

B1 B0 B1 B0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 A1 B1 C1 D1 A0 B0 C0 D0 A1 B1 C1 D1

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 C0 D0 A1 B1 C1 D1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Hsync No Disp Hsync No Disp

B 0 A1 A3 A2 40010 B C1 C0 D1 D0

B 1 A1 A3 A2 40007/8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
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GA 40010 / GA 40008 / GA 40007 GA 40010 / GA 40008 / GA 40007

(3) (4)

B1 B0 B1 B0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 A1 B1 C1 D1 A0 B0 C0 D0 A1 B1 C1 D1

A0 B0 C0 D0 E0 F0 G0 H0 A0 B0 A2 B2 A1 B1 A3 B3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Hsync No Disp Hsync No Disp

B C0 D0 E0 B 0 0 A3 A2

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8  

9.3.4.3.4 MODE 3 TO MODE 0.1.2.3 
 
On a line displayed in MODE 3, the data display resumes: 

 On CRTC’s 0 and 2, from the 4th Pixel-M2 of the 5th VRAM byte. 
 On CRTC 1, from the 5th Pixel-M2 of the 5th VRAM byte. 

 
On CRTC’s 0 and 2, the first Pixel-M2 displayed is the last of the 4 pixel-M2 of the MODE 3 
pixel displayed in its original colour (i.e. a colour number between 0 and 3). In other words, only 
¼ of the MODE 3 pixel is displayed before the GATE ARRAY displays the following pixels. 
 
If MODE 2 is the new required then the GATE ARRAY will display 3 new Pixel-M2’s after the 4th  
which represents in total the display of 7 pixel-M2’s from the same byte. 
 
If the new required mode is different from MODE 2 then the GATE ARRAY will display 4 new Pixel-
M2’s after the 4th. 
 
The following table describes the GATE ARRAY's interpretation of the VRAM byte processed when 
redisplay is enabled, depending on the new graphics mode requested. 
 

Mode to Mode VRAM Byte Displayed Pixels

3 0 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (1) b0 b4 b2 b6

3 1 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (2) b2 b6 b1 b5

3 2 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (3) b6 b5 b4

3 3 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (4) 0 0 b2 b6

1 2 3 4 5 6 7 8  
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GA 40010 / GA 40008 / GA 40007 GA 40010 / GA 40008 / GA 40007

(1) (2)

0 0 A1 A0 0 0 A1 A0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 A2 B2 A1 B1 A3 B3

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 C0 D0 A1 B1 C1 D1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Hsync No Disp Hsync No Disp

A B3 B2 B1 B0 A B1 B0 C1 C0

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
 

GA 40010 GA 40008 / GA 40007

(3) (3)

0 0 A1 A0 0 0 0 A1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 A2 B2 A1 B1 A3 B3

A0 B0 C0 D0 E0 F0 G0 H0 A0 B0 C0 D0 E0 F0 G0 H0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Hsync No Disp Hsync No Disp

A B0 C0 D0 A B0 C0 D0

1 2 3 4 5 6 7 1 2 3 4 5 6 7
 

 
GA 40010 / GA 40008 / GA 40007

(4)

0 0 A1 A0

7 6 5 4 3 2 1 0

A0 B0 x x A1 B1 x x

A0 B0 x x A1 B1 x x

7 6 5 4 3 2 1 0

Hsync No Disp

A 0 0 B1 B0

1 2 3 4 5 6 7 8
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9.3.4.4 CRTC 0, 1, 2 : PIXEL COOKING WITH R3.JIT 
 
The R3.JIT technique can delay the end of a HSYNC by 0.25 µsec. 
 
On CRTC’s 0 and 1, the HSYNC ceases after the last black Pixel-M2 of the HSYNC. 
On CRTC 2, the HSYNC stops on the last Pixel-M2 of the HSYNC and allows the visualization of an 
additional pixel. 
This additional pixel is symbolized in purple on the following diagrams 

9.3.4.4.1 MODE 2 TO MODE 0.1.2.3 

Mode to Mode VRAM Byte GA 40010 : Displayed Pixels

2 0 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (1) (1)

2 1 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (2) b1

2 2 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (3)

2 3 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (4) (4)

1 2 3 4 5 6 7 8 9  
 

GA 40010 GA 40010

(1) (2)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 C0 D0 A1 B1 C1 D1

0 B3 0 B1 0 C1

Hsync No Disp Hsync No Disp

B B C C

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
 

 
GA 40010 GA 40010

(3) (4)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 E0 F0 G0 H0 A0 B0 A2 B2 A1 B1 A3 B3

Hsync No Disp 0 0 0 B1

H

1 2 3 4 5 6 7 8 Hsync No Disp

B B

1 2 3 4 5 6 7 8 9
 

 
 

Mode to Mode VRAM Byte GA 40007/8 : Displayed Pixels

2 0 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (1) (1)

2 1 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (2) b2

2 2 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (3)

2 3 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (4) (4)

1 2 3 4 5 6 7 8 9
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GA 40007 / GA 40008 GA 40007 / GA 40008

(1) (2)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 C0 D0 A1 B1 C1 D1

1 A3 1 A1 1 B1

Hsync No Disp Hsync No Disp

A A B B

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

 
GA 40007 / GA 40008 GA 40007 / GA 40008

(3) (4)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 E0 F0 G0 H0 A0 B0 A2 B2 A1 B1 A3 B3

Hsync No Disp 0 0 1 A1

H

1 2 3 4 5 6 7 8 Hsync No Disp

A A

1 2 3 4 5 6 7 8 9

 

9.3.4.4.2 MODE 0 TO MODE 0.1.2.3 
 

Mode to Mode VRAM Byte Displayed Pixels

0 0 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (1) (1)

0 1 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (2) (2)

0 2 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (3)

0 3 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (4) (4)

1 2 3 4 5 6 7 8  
 

GA 40010 /GA 40007 / GA 40008 GA 40010 /GA 40007 / GA 40008

(1) (2)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 C0 D0 A1 B1 C1 D1

B3 B2 B1 B0 C1 C0

Hsync No Disp Hsync No Disp

B B C C

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
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GA 40010 /GA 40007 / GA 40008 GA 40010 /GA 40007 / GA 40008

(3) (4)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 E0 F0 G0 H0 A0 B0 x x A1 B1 x x

Hsync No Disp 0 0 B1 B0

D

1 2 3 4 5 6 7

Hsync No Disp

B B

1 2 3 4 5 6 7 8
 

9.3.4.4.3 MODE 1 TO MODE 0.1.2.3 
 

Mode to Mode VRAM Byte Displayed Pixels

1 0 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (1) (1)

1 1 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (2) (2)

1 2 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (3)

1 3 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (4) (4)

1 2 3 4 5 6 7 8  
 

GA 40010 / GA 40007 / GA 40008 GA 40010 / GA 40007 / GA 40008

(1) (2)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 C0 D0 A1 B1 C1 D1

40010 0 A1 A3 A2 D1 D0

40007/40008 1 A1 A3 A2

Hsync No Disp Hsync No Disp

A A D D

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

 
 

GA 40010 / GA 40007 / GA 40008 GA 40010 / GA 40007 / GA 40008

(3) 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 E0 F0 G0 H0 A0 B0 A2 B2 A1 B1 A3 B3

Hsync No Disp 0 0 A3 A2

E

1 2 3 4 5 6 7 Hsync No Disp

A A

1 2 3 4 5 6 7 8
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9.3.4.4.4 MODE 3 TO MODE 0.1.2.3 
 

Mode to Mode VRAM Byte Displayed Pixels

3 0 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (1) (1)

3 1 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (2) (2)

3 2 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (3)

3 3 b7 b6 b5 b4 b3 b2 b1 b0 Hsync No Disp (4) (4)

1 2 3 4 5 6 7 8  
 

GA 40010 / GA 40007 / GA 40008 GA 40010 / GA 40007 / GA 40008

(1) (2)

7 6 5 4 3 2 1 0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 C0 D0 A1 B1 C1 D1

B3 B2 B1 B0 C1 C0

Hsync No Disp Hsync No Disp

B B C C

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

GA 40010 / GA 40007 / GA 40008 GA 40010 / GA 40007 / GA 40008

(3) (4)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 E0 F0 G0 H0 A0 B0 x x A1 B1 x x

Hsync No Disp 0 0 B1 B0

D

1 2 3 4 5 6 7

Hsync No Disp

B B

1 2 3 4 5 6 7 8
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9.3.4.5 CRTC 4 : PIXEL COOKING 
 
When the PRE-ASIC switches from one graphics mode to another mode, it is already processing 
one-byte data according to the previous mode, and the final result obtained reveals its internal 
logic. 
 
The display stops for 2 µsec (32 Pixel-M2). 
The display is restored 1 Pixel-M2 before the PRE-ASIC changes the graphics mode. 
 
The 36th Pixel-M2 displayed therefore has the characteristics of the old mode, for its 
fraction corresponding to 1 Pixel-M2. 

9.3.4.5.1 MODE 2 TO MODE 0.1.2.3 
 
On a line displayed in MODE 2, data display resumes from the 3rd Pixel-M2 of the 7th VRAM 
byte. 
 
The first pixel displayed is in MODE 2 (PEN 1 or 0). 
 
Since the MODE 2 pixels are "ahead" of the pixels of the other modes, the PRE-ASIC will display 6 
new Pixel-M2’s after the 3rd, unless the mode has not changed. 
This represents the display of 9 M2-pixels from a single byte. 
 
The table below describes the interpretation by the PRE-ASIC of the VRAM byte processed when 
the display is reactivated, according to the new graphics mode requested. 
 

Mode to Mode VRAM Byte ASIC 40226: Displayed Pixels

2 0 b7 b6 b5 b4 b3 b2 b1 b0 No Disp b5 0.b2.b0.b4 0 b1 0 b3

2 1 b7 b6 b5 b4 b3 b2 b1 b0 No Disp b5 b0 b4 0 b3 0 b2

2 2 b7 b6 b5 b4 b3 b2 b1 b0 No Disp b5 b4 b3 b2 b1 b0

2 3 b7 b6 b5 b4 b3 b2 b1 b0 No Disp b5 0.0.b0.b4 0 0 0 b3

1 2 3 4 5 6 7 8 9  

9.3.4.5.2 MODE 0 TO MODE 0.1.2.3 
 
On a line displayed in MODE 0, the data display resumes from 2nd Pixel-M2 of the 7th byte of 
the VRAM. 
 
The first Pixel-M2 displayed is the last of the 4 pixel-M2 of the MODE 0 pixel displayed in its 
original colour (i.e. a colour number between 0 and 15). In other words, only ¼ of the MODE 0 
pixel is displayed before the PRE-ASIC displays the following pixels. 
 
If the new graphics mode required is MODE 2, then the PRE-ASIC displays 5 new Pixel-M2’s after 
the 2nd, which in total represents the display of 7 pixel-M2’s from the same byte. 
 
If the new requested mode is different from MODE 2, then the PRE-ASIC displays 6 new Pixel-
M2’s after the 2nd one. 
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Finally, if the new required mode is 1 or 2, then the PRE-ASIC, to calculate the new colour 
numbers, "reuses" bits already used to calculate the colour number of the previous pixel. 
 
The table below describes the interpretation by the PRE-ASIC of the VRAM byte processed when 
the display is reactivated, according to the new graphics mode requested 
 

Mode to Mode VRAM Byte ASIC 40226: Displayed Pixels

0 0 b7 b6 b5 b4 b3 b2 b1 b0    b1.b5.b3.b7 b0 b4 b2 b6

0 1 b7 b6 b5 b4 b3 b2 b1 b0 (1) b3 b7 b2 b6 b1 b5

0 2 b7 b6 b5 b4 b3 b2 b1 b0 (2) b7 b6 b5 b4 b3

0 3 b7 b6 b5 b4 b3 b2 b1 b0 (3) (3) 0 0 b2 b6

1 2 3 4 5 6 7 8  
 

GA 40226 GA 40226

(1)

A3 A2 A1 A0 (2) A3 A2 A1 A0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 A2 B2 A1 B1 A3 B3

A0 B0 C0 D0 A1 B1 C1 D1 A0 B0 C0 D0 E0 F0 G0 H0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Hsync Hsync

No Disp No Disp

A A1 A0 B1 B0 C1 C0 A A0 B0 C0 D0 E0

PixM2 : 1 2 3 4 5 6 7 8 PixM2: 1 2 3 4 5 6 7

 
 

GA 40226

(3)

0 0 B1 B0

7 6 5 4 3 2 1 0

A0 B0 A2 B2 A1 B1 A3 B3

A0 B0 A2 x A1 B1 A3 x

7 6 5 4 3 2 1 0

A3 A2 A1 A0

0 0 A1 A0

Hsync 

No Disp

A' A 0 0 B1 B0

PixM2 : 1 2 3 4 5 6 7 8
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9.3.4.5.3 MODE 1 TO MODE 0.1.2.3 
 
On a line displayed in MODE 1, the data display resumes from 2nd Pixel-M2 of the 7th byte of 
the VRAM. 
 
The first Pixel-M2 displayed is the last of the 2 pixel-M2 of the MODE 1 pixel displayed in its 
original colour (i.e. a colour number between 0 and 3). In other words, only half of the MODE 1 
pixel is displayed before the PRE-ASIC displays the following pixels. 
 
If the new graphics mode required is MODE 2, then the PRE-ASIC displays 5 new Pixel-M2’s after 
the 2nd, which in total represents the display of 7 pixel-M2’s from the same byte. 
 
If the new requested mode is different from MODE 2, then the PRE-ASIC displays 6 new Pixel-
M2’s after the 2nd one. 
 
Finally, if the new mode required is 1 or 2, then the PRE-ASIC, to calculate the new colour 
numbers, "reuses" bits already used to calculate the colour number of the previous pixel. 
 
The table below describes the interpretation by the PRE-ASIC of the VRAM byte processed when 
the display is reactivated, according to the new graphics mode requested. 
 

Mode to Mode VRAM Byte Displayed Pixels

1 0 b7 b6 b5 b4 b3 b2 b1 b0 (1) b0.b4.b2.b6 0 b3 b1 b5

1 1 b7 b6 b5 b4 b3 b2 b1 b0 (2) b2 b6 b1 b5 b0 b4

1 2 b7 b6 b5 b4 b3 b2 b1 b0 (3) b6 b5 b4 b3 b2

1 3 b7 b6 b5 b4 b3 b2 b1 b0 (4) 0.0.b2.b6 0 0 b1 b5

1 2 3 4 5 6 7 8  
 
 

GA 40226 GA 40226

(1) (4)

A1 A0 A1 A0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 A1 B1 C1 D1 A0 B0 C0 D0 A1 B1 C1 D1

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 A2 B2 A1 B1 A3 B3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

B3 B2 B1 B0 0 A1 A3 A2 0 0 B1 B0 0 0 A3 A2

Hsync Hsync

No Disp No Disp

A B A A B A

PixM2 : 1 2 3 4 5 6 7 8 PixM2 : 1 2 3 4 5 6 7 8
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GA 40226 GA 40226

(2) (3)

A1 A0 A1 A0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 C0 D0 A1 B1 C1 D1 A0 B0 C0 D0 A1 B1 C1 D1

A0 B0 C0 D0 A1 B1 C1 D1 A0 B0 C0 D0 E0 F0 x x

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Hsync

No Disp Hsync No Disp

A B1 B0 C1 C0 D1 D0 A B0 C0 D0 E0 F0

PixM2 : 1 2 3 4 5 6 7 8 PixM2 : 1 2 3 4 5 6 7

 

9.3.4.5.4 MODE 3 TO MODE 0.1.2.3 
 
On a line displayed in MODE 3, the data display resumes from 2nd Pixel-M2 of the 7th byte of 
the VRAM. 
 
The first Pixel-M2 displayed is the last of the 4 pixel-M2 of the MODE 3 pixel displayed in its 
original colour (i.e. a colour number between 0 and 3). In other words, only the quarter of the 
MODE 3 pixel is displayed before the PRE-ASIC displays the following pixels. 
 
If MODE 2 is the new graphics mode required, then the PRE-ASIC displays 5 new Pixel-M2’s after 
the 2nd which in total represents the display of 7 pixel-M2’s from the same byte. 
 
If the new requested mode is different from MODE 2 then the PRE-ASIC displays 6 new Pixel-M2’s 
after the 2nd one. 
 
Finally, if the new mode required is 1 or 2, then the PRE-ASIC, to calculate the new colour 
numbers, "reuses" bits already used to calculate the colour number of the previous pixel. 
 
The table below describes the interpretation by the PRE-ASIC of the VRAM byte processed when 
the redisplay is activated, according to the new graphics mode requested. 
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Mode to Mode VRAM Byte Displayed Pixels

3 0 b7 b6 b5 b4 b3 b2 b1 b0 (3) b1.b5.b3.b7 b0 b4 b2 b6

3 1 b7 b6 b5 b4 b3 b2 b1 b0 (1) b3 b7 b2 b6 b1 b5

3 2 b7 b6 b5 b4 b3 b2 b1 b0 (2) b7 b6 b5 b4 b3

3 3 b7 b6 b5 b4 b3 b2 b1 b0   0.0.b3.b7 0 0 b2 b6

1 2 3 4 5 6 7 8  
 
GA 40226 GA 40226

(1) (2)

0 0 A1 A0 0 0 A1 A0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

A0 B0 A2 B2 A1 B1 A3 B3 A0 B0 A2 B2 A1 B1 A3 B3

A0 B0 C0 D0 A1 B1 C1 D1 A0 B0 C0 D0 E0 F0 G0 H0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Hsync Hsync

No Disp No Disp

M A1 A0 B1 B0 C1 C0 A A0 B0 C0 D0 E0

PixM2 : 1 2 3 4 5 6 7 8 PixM2: 1 2 3 4 5 6 7

 

GA 40226

(4)

0 0 A1 A0

7 6 5 4 3 2 1 0

A0 B0 C0 D0 A1 B1 C1 D1

A0 B0 A2 B2 A1 B1 A3 B3

7 6 5 4 3 2 1 0

A3 A2 A1 A0 B3 B2 B1 B0

Hsync

No Disp

A A B

PixM2 : 1 2 3 4 5 6 7 8
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10 COUNTER : REGISTER R9 

10.1 GENERAL 
 
Register 9 allows you to set the number of vertical lines of each character line. 
 
In principle, the C9 counter, which determines the raster line of the character line, increments to 
the value of R9. When IVM interlace mode is enabled, the counting algorithm of C9 is different 
depending on the CRTC type (See Chapter 19.3). 
 
When it returns to 0, C4 is incremented (and in "principle" should return to 0 when C4=R4). 
 
The internal "row" counter C9 is connected directly to the bits 11,12 and 13 of the VRAM pointer. 
C9 delimits, in a space of 16 KB, 8 slices of 2 KB for 8 different possible "lines". 
 
Extended to 64k of addressable space, this represents 8 slices of 8 KB for the 8 "lines". This 
principle contributes to the vertical non-linearity of the display ("curtain" effect when the memory 
is transferred without cutting) well known to any CPC regular. 
 
The definition of R9 is 5 bits which results in "vertical characters" of up to 32 lines. Bits 3 and 4 of 
the counter are not considered in the calculation of the video pointer on C9 values that exceed 7. 
 
However, this is information that must be considered if C9 is to count beyond 7.  
 
Indeed, even if C9=8 gives the display of a line 0 (bit 3 being "ignored"), this value does not 
always allow for the consideration of the operations that take place during the change of a line-
character (C4). 
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10.2 TIME LIMITS 
R9 update is considered while C0<=R0. 
 
In the diagrams below, R9 is set to 0 when it was greater than 0 before. 
 
CRTC 0 , 1, 2 

R0

R4=38 / R9=7 C0: 59 60 61 62 63 0 1 2 3 4

C4=1 / C9=0 OUT R9,0 C9=0

R0

R4=38 / R9=7 C0: 59 60 61 62 63 0 1 2 3 4

C4=1 / C9=0 OUT R9,0 C9=0

R0

R4=38 / R9=7 C0: 59 60 61 62 63 0 1 2 3 4

C4=1 / C9=0 OUT R9,0 C9=1  
 
CRTC 3, 4 
 

R0

R4=38 / R9=7 C0: 59 60 61 62 63 0 1 2 3 4

C4=1 / C9=0 OUT R9,0 C9=0

R0

R4=38 / R9=7 C0: 59 60 61 62 63 0 1 2 3 4

C4=1 / C9=0 OUT R9,0 C9=1

R0

R4=38 / R9=7 C0: 59 60 61 62 63 0 1 2 3 4

C4=1 / C9=0 OUT R9,0 C9=1  

10.3 COUNTING RULES 
 
If R9 is updated with 0 while C9 is greater than 0, for example, C9 will count to its maximum 
value (31) before going back to 0. 
 
There is an exception to this rule for CRTC’s 0 and 2, when R9 is updated with 0 on the last line of 
the last character of the frame.  
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10.3.1 CRTC 0 
 
It can be read quite often that the modification of R9 on CRTC 0 (and 2) is not considered for the 
line that follows the one where the update took place because the counter for this register would 
be "buffered". The only value that is saved in a buffer in the CRTC is the video pointer because it 
is discarded at each line start.(See Chapters 17 and 20.2). 
 
However, the CRTC does not "buffer" its counters. It simply tests the equivalence of the 
counters with its registers at very precise moments.  In this case, the value of C9 is 
compared with R9 when C0=0 (as well as C4 with R4) to determine if the line was the last on the 
frame. This comparison is made after counters C4 and C9 have been updated with respect to the 
previous line. 
 
This comparison takes place only to decide whether C4 will be reset to 0 or whether 
C4 will be incremented. 
 
Indeed, C4 is a counter that must "officially" be able to exceed R4, especially in vertical 
adjustment.  
 
Note : CRTC’s 3 and 4, for which C4 does not exceed R4 in adjustment, "solidifies" the additional 
lines with C4=R4. 
 
If R9 or R4 are modified after C0 has exceeded 0, it does not change anything. Case closed. 
When C4 is incremented, C9 necessarily goes to 0 (except when R0=0). 
 
Apart from this particular processing management of C4 on the last line of a frame, the update 
of R9 is considered immediately. 

10.3.1.1 GENERAL CASE 
If R9 is changed with the value of C9, it will change to 0 on the next line. 
 Example : C9=0 and R9 is updated with 0, which was 7 before. 
 Example : C9=3 and R9 is updated with 3, which was 7 before. 
 
If R9 is modified with a value less than C9, then C9=C9+1 (overflow of C9) 

Example : C9=3 and R9 is updated with 1. Next C9 will be 4. 
If the C9 counter overflows, it will count to its maximum value (31) before looping back to 
0. 

 
If R9 is modified with a value greater than C9, then C9=C9+1. C4 is unchanged. 
 Example : C9=0 and R9 is updated with 7. C9 will be 1 on the next line. 

10.3.1.2 EXCEPTION TO THE  GENERAL CASE : LAST LINE OF FRAME 
Updating R9 on this last line when C0>1 has no impact on the next C9, because C4 will be forced 
to 0 and therefore C9 will also change to 0. 
 
If C4=R4 and C9=R9 when C0=0, then the "last frame line" state is lifted. In this situation, C4 
will be reset to 0 (excluding additional lines), and C9 will change to 0 regardless of the value 
programmed in R9 afterwards. 
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If C4=R4 and C9<>R9 when C0=0, then C4 will be incremented no matter what.  In this 
situation, if R9 is changed on this line with the value of C9, then C9 will change to 0 but C4 will be 
incremented by 1. 
The "Last Line" status is tested at the very beginning of the C0=0 management. 

 If an R9 update occurs when C0=0, then the last line state will not be lifted. 
 If an update of R9 takes place when C0=1, then the additional management takes place 

and R5 replaces R9 (C9+1=R5) 

10.3.2 CRTC 1 

10.3.2.1 GENERAL CASE 
If R9 is changed to the current value of C9, then on the following line: 
 C9 goes to 0. 
 C4 is incremented by 1, and goes to 0 if it was R4, and in this case the offset is considered. 
 
If R9 is modified with a value less than C9 
 C9=C9+1 and C4 is unchanged (until the end of the overflow of C9).  
 The offset will be changed only if C4=C9=C0=0 
 
If R9 is modified with a value greater than C9, then C9=C9+1. C4 is unchanged. 
 Example : C9=0 and R9 is updated with 7. C9 will be 1 on the next line. 

10.3.2.2 NO EXCEPTION 
Everything is pure logic, in an unspeakable and tasteless simplicity. :-) 

10.3.3 CRTC 2 
 
The management of C9/R9 is linked to that of C4/R4. 
 
Chapter 12.4.2, page 92 describes counting and updating management for the two registers. 
 
Apart from the cases where C4 and C9 are zeroed because of a "Last Line" state, similar to that 
existing on CRTC 0, C9 counts up to R9, and returns to 0 once C9=R9. C4 is then incremented (or 
reset to 0) depending on the situation. 
 
If register C9 overflows because R9 has been updated with a value less than C9 (and apart from a 
programmed reset of C9), the counter will count up to its maximum value (31) before looping 
back to 0, until the value of R9 is reached again. 

10.3.4 CRTC 3, 4 

10.3.4.1 GENERAL CASE 
When R9 is changed, its value is considered immediately in the following way.  
 
If R9 is changed with a value less than or equal to C9, then C9 changes to 0 on the next line, and 
C4 goes to 0 (if C4=R4) otherwise C4=C4+1. 
 
Simply put, it is impossible to "overflow" C9 on these CRTC’s. 
 
It is not a simple equality test which takes place, but a "more complex" comparison performed by 
the ASIC: 
If current-C9 > R9 then next-C9=0 
 



V1.5 – 03.2023 – Page 75 / 281 
 

Example : If C9 was 4, and R9 is changed with 1 (whereas it was 7 before), then C9 will go to 0 
(and C4=C4+1 or 0 depending on the value of C4 and R4) 
 
After C9=0, C9 will be incremented to the new value of R9. 1 in the example. 
 
This management sometimes allows for dual compatibility with CRTC’s 0, 1 and 2. 
 
Indeed, if a program modifies R9 as part of a line-to-line rupture, a classic way to proceed is to: 

 Update R9=0 on the last line of the frame on CRTC 0 or 2, so that the next line C9=0 is 
also considered the last frame (if R4=0). 

 Update R9=0 on the first line of the fraùe on CRTC 1, so that the next line is considered 
the last frame (if R4=0). 

 
In both situations, CRTC’s 3 and 4 will put C9=0 back on the next line. 
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Previous R9=7 CRTC 0 (HD6845SP) CRTC 1 (UM6845R) CRTC 2 (MC6845P) CRTC 3, 4

C4=R4 (>0) Event Result on next line Result on next line Result on next line Result on next line

Case R9 C9 cur Upd R9 C9 C4 Offs Upd C9 C4 Offs Upd C9 C4 Offs Upd C9 C4 Offs Upd

1 7 0 0 0 C4=C4+1 (*) No 0 0 Yes 0 0 (**) If C0<=R1 0 0 Yes

2 7 1 0 C9=C9+1 (2) unmodified No C9=C9+1 (2) unmodified Yes if C4=0 C9=C9+1 (2) unmodified No 0 0 Yes

3 7 2 0 C9=C9+1 (3) unmodified No C9=C9+1 (3) unmodified Yes if C4=0 C9=C9+1 (3) unmodified No 0 0 Yes

4 7 3 0 C9=C9+1 (4) unmodified No C9=C9+1 (4) unmodified Yes if C4=0 C9=C9+1 (4) unmodified No 0 0 Yes

5 7 4 0 C9=C9+1 (5) unmodified No C9=C9+1 (5) unmodified Yes if C4=0 C9=C9+1 (5) unmodified No 0 0 Yes

6 7 5 0 C9=C9+1 (6) unmodified No C9=C9+1 (6) unmodified Yes if C4=0 C9=C9+1 (6) unmodified No 0 0 Yes

7 7 6 0 C9=C9+1 (7) unmodified No C9=C9+1 (7) unmodified Yes if C4=0 C9=C9+1 (7) unmodified No 0 0 Yes

8 7 7 0 0 0 Yes C9=C9+1 (8) unmodified Yes if C4=0 0 0 If C0<=R1 0 0 Yes

(*) overflow (**) if R9 is updated outside of hsync period

Previous R9=7 CRTC 0 (HD) CRTC 1 CRTC 2 CRTC 3, 4

C4<>R4 Event Result on next line Result on next line Result on next line Result on next line

Case R9 C9 cur Upd R9 C9 C4 Offs Upd C9 C4 Offs Upd C9 C4 Offs Upd C9 C4 Offs Upd

1 7 0 0 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No

2 7 1 0 C9=C9+1 (2) unmodified No C9=C9+1 (2) unmodified Yes if C4=0 C9=C9+1 (2) unmodified No 0 C4=C4+1 No

3 7 2 0 C9=C9+1 (3) unmodified No C9=C9+1 (3) unmodified Yes if C4=0 C9=C9+1 (3) unmodified No 0 C4=C4+1 No

4 7 3 0 C9=C9+1 (4) unmodified No C9=C9+1 (4) unmodified Yes if C4=0 C9=C9+1 (4) unmodified No 0 C4=C4+1 No

5 7 4 0 C9=C9+1 (5) unmodified No C9=C9+1 (5) unmodified Yes if C4=0 C9=C9+1 (5) unmodified No 0 C4=C4+1 No

6 7 5 0 C9=C9+1 (6) unmodified No C9=C9+1 (6) unmodified Yes if C4=0 C9=C9+1 (6) unmodified No 0 C4=C4+1 No

7 7 6 0 C9=C9+1 (7) unmodified No C9=C9+1 (7) unmodified Yes if C4=0 C9=C9+1 (7) unmodified No 0 C4=C4+1 No

8 7 7 0 C9=C9+1 (8) unmodified No C9=C9+1 (8) unmodified Yes if C4=0 C9=C9+1 (8) unmodified No 0 C4=C4+1 No

Previous R9=7 CRTC 0 (HD) CRTC 1 CRTC 2 CRTC 3, 4

C4=R4 (>0) Event Result on next line Result on next line Result on next line Result on next line

Case R9 C9 cur Upd R9 C9 C4 Offs Upd C9 C4 Offs Upd C9 C4 Offs Upd C9 C4 Offs Upd

1 7 0 0 0 C4=C4+1 No 0 0 Yes 0 0 (**) If C0<=R1 0 0 Yes

2 7 1 1 0 C4=C4+1 No 0 0 Yes 0 0 (**) If C0<=R1 0 0 Yes

3 7 2 2 0 C4=C4+1 No 0 0 Yes 0 0 (**) If C0<=R1 0 0 Yes

4 7 3 3 0 C4=C4+1 No 0 0 Yes 0 0 (**) If C0<=R1 0 0 Yes

5 7 4 4 0 C4=C4+1 No 0 0 Yes 0 0 (**) If C0<=R1 0 0 Yes

6 7 5 5 0 C4=C4+1 No 0 0 Yes 0 0 (**) If C0<=R1 0 0 Yes

7 7 6 6 0 C4=C4+1 No 0 0 Yes 0 0 (**) If C0<=R1 0 0 Yes

8 7 7 7 0 0 Yes 0 0 Yes 0 0 (**) If C0<=R1 0 0 Yes

(**) if R9 is updated outside of hsync period
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Previous R9=7 CRTC 0 (HD) CRTC 1 CRTC 2 CRTC 3, 4

C4<>R4 Event Result on next line Result on next line Result on next line Result on next line

Case R9 C9 cur Upd R9 C9 C4 Offs Upd C9 C4 Offs Upd C9 C4 Offs Upd C9 C4 Offs Upd

1 7 0 0 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No

2 7 1 1 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No

3 7 2 2 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No

4 7 3 3 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No

5 7 4 4 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No

6 7 5 5 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No

7 7 6 6 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No

8 7 7 7 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No 0 C4=C4+1 No

Previous R9=7 CRTC 0 (HD) CRTC 1 CRTC 2 CRTC 3, 4

C4=R4 Event Result on next line Result on next line Result on next line Result on next line

Case R9 C9 cur Upd R9 C9 C4 Offs Upd C9 C4 Offs Upd C9 C4 Offs Upd C9 C4 Offs Upd

1 7 2 1 C9=C9+1 (3) unmodified No C9=C9+1 (3) unmodified Yes if C4=0 C9=C9+1 (3) unmodified No 0 0 Yes

Previous R9=0 CRTC 0 (HD) CRTC 1 CRTC 2 CRTC 3, 4

C4=R4=0 Event Result on next line Result on next line Result on next line Result on next line

Case R9 C9 cur Upd R9 C9 C4 Offs Upd C9 C4 Offs Upd C9 C4 Offs Upd C9 C4 Offs Upd

1 0 0 0 0 0 Yes 0 0 Yes 0 (*) C4=0 / C4+1 if C0<=R1/No 0 0 Yes

2 0 0 1 0 0 Yes C9=C9+1 (1) 0 Yes (C4=0) 0 / 1 (*) C4=0 / C4+1 if C0<=R1/No C9=C9+1 (1) 0 No

3 0 0 2 0 0 Yes C9=C9+1 (1) 0 Yes (C4=0) 0 / 1 (*) C4=0 / C4+1 if C0<=R1/No C9=C9+1 (1) 0 No

4 0 0 3 0 0 Yes C9=C9+1 (1) 0 Yes (C4=0) 0 / 1 (*) C4=0 / C4+1 if C0<=R1/No C9=C9+1 (1) 0 No

5 0 0 4 0 0 Yes C9=C9+1 (1) 0 Yes (C4=0) 0 / 1 (*) C4=0 / C4+1 if C0<=R1/No C9=C9+1 (1) 0 No

6 0 0 5 0 0 Yes C9=C9+1 (1) 0 Yes (C4=0) 0 / 1 (*) C4=0 / C4+1 if C0<=R1/No C9=C9+1 (1) 0 No

7 0 0 6 0 0 Yes C9=C9+1 (1) 0 Yes (C4=0) 0 / 1 (*) C4=0 / C4+1 if C0<=R1/No C9=C9+1 (1) 0 No

8 0 0 7 0 0 Yes C9=C9+1 (1) 0 Yes (C4=0) 0 / 1 (*) C4=0 / C4+1 if C0<=R1/No C9=C9+1 (1) 0 No

(*) According authorization of last line in Hsync 
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11 COUNTER : REGISTER R5 

11.1 GENERAL 
 
The R5 register allows you to add so-called vertical adjustment lines at the end of the frame.  
The objective of this register is to complete the total number of vertical rows displayed when 
(R4+1)x(R9+1) applied during a frame does not correspond to 312 rows (for the European 
standard) 
 
This register contains a number of lines on 5 bits (0 to 31) which corresponds to the maximum 
possible adjustment compared to the maximum number of possible lines of a character, fixed by 
R9. Indeed, CRTC’s 1, 2, 3 and 4 do not respect this functional principle because the adjustment 
is not supposed to contain several characters. In other words, if R5/R9+1>1, R4 should be 
adjusted by the developer. 
 
If R5 = 0 then there is no specific adjustment. 
If R5 > 0 then an adjustment takes place with the creation of R5 additional lines. 
 
If one of the two interlace modes is programmed (R8=1 or R8=3) then an additional adjustment 
line is added on the even frames, after any lines generated via R5. 
 
The implementation of the vertical adjustment function is the source of several differences 
between the CRTCs. On CRTCs 0, 3 and 4, there is no specific C5 counter and C9 is used for 
comparison with R5. On CRTCs 1 and 2, there is a specific counter C5 used in conjunction with C9 
to allow management of "characters" within the adjustment lines.  
 
The C4 incrementation follows different logic: 

 On CRTC 0, C4 is incremented only once and it is C4=R4+1 for all additional lines. C9 is 
compared with R5 and R9.  

 On CRTC’s 1 and 2, C4 increments regardless of the value of R4 each time C9=R9, as 
long as C5+1 has not reached R5. For the first additional line, C4=R4+1 if C9=R9. 

 On CRTC’s 3 and 4, C4 does not increment and is equal to R4. C9 is only compared with 
R5. 

 
R1 management for updating the video pointer continues to be provided during this management 
of additional lines on CRTC’s 0, 1 and 2 when C9=R9. 
 
On CRTC’s 3 and 4, this management of R1 for updating the video pointer only takes place the 
first time when C9=R9 on the character C4=R4 concerned by the additional lines. 
 
R7 can be positioned on one of the values reached by C4 in vertical adjustment to trigger a 
VSYNC. On CRTC 2, if R7 is positioned with C4 during a HSYNC on CRTC 2, a GHOST VSYNC 
begins. On CRTC 0 the VSYNC is blocked when R7 is updated with C4 on a position C0<2. On 
CRTC 3 and 4, the VSYNC only starts when C4=R7 on position C0=C9=0. 
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On CRTC’s 0, 1 and 2, if R9 is modified with a value different from C9 on the last line of the frame 
before the vertical adjustment, then the additional line will correspond to C9+1 and C4 will not be 
incremented.  
 
For example, if C4=R4=38, C9=R9=7 and R5=1 on the last line, and R9 is modified with 6 or 8 on 
this line, then the additional line will be C4=38 and C9=8. 

11.2 COUNTING IN VERTICAL ADJUSTEMENT 

11.2.1 GENERAL 
 
The following diagrams describe the diversity of the methods of counting (C4, C9, C5) and 
updating the video pointer during this management, considering that R5 and R9 are not modified 
during the adjustment. The registers are initialized as follows (R4=10, R5=16, R9=3, R1=40, 
R0=63) 
 
CRTC 0 CRTC 1, 2 CRTC 3, 4

C4 C9 PTR-VRAM LINE C4 C9 C5 PTR-VRAM LINE C4 C9 PTR-VRAM LINE

11 0 0 &0 11 0 0 0 &0 10 0 0 &0

11 1 0 &800 11 1 1 0 &800 10 1 0 &800

11 2 0 &1000 11 2 2 0 &1000 10 2 0 &1000

11 3 0 &1800 11 3 3 0 &1800 10 3 0 &1800

11 4 40 &2000 12 0 4 40 &0 10 4 0 &2000

11 5 40 &2800 12 1 5 40 &800 10 5 0 &2800

11 6 40 &3000 12 2 6 40 &1000 10 6 0 &3000

11 7 40 &3800 12 3 7 40 &1800 10 7 0 &3800

11 8 40 &0 13 0 8 80 &0 10 8 0 &0

11 9 40 &800 13 1 9 80 &800 10 9 0 &800

11 10 40 &1000 13 2 10 80 &1000 10 10 0 &1000

11 11 40 &1800 13 3 11 80 &1800 10 11 0 &1800

11 12 40 &2000 14 0 12 120 &0 10 12 0 &2000

11 13 40 &2800 14 1 13 120 &800 10 13 0 &2800

11 14 40 &3000 14 2 14 120 &1000 10 14 0 &3000

11 15 40 &3800 14 3 15 120 &1800 10 15 0 &3800

11.2.2 CRTC 0 
 
On CRTC 0, HITACHI engineers saved a C5 counter to use C9 instead. In additional management, 
C9 is compared with R9 and R5. The new limit of C9 is no longer R9 but R5-1 (R5 must be greater 
than 0 for there to be at least one line generated, except in the context of interlace modes). 
 
The additional management then simply inhibits the reset of C9 to 0. 
 
It is not "convenient" to manage several characters automatically during the adjustment, but it 
allows you to switch to another address without C9 being equal to 0. 
 
C9 continues to be compared with R9 to consider the video pointer (VMA'=VMA) when 
C0=R1 and C9=R9. 
 
Thus, the diagram on the next page, which uses the data from the first diagram shows the impact 
of an R9 update being adjusted to change the VMA' pointer. 
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CRTC 0

C4 C9 PTR-VRAM LINE

11 0 0 &0

11 1 0 &800

11 2 0 &1000

11 3 0 &1800 R9

11 4 40 &2000 OUT R9,10

11 5 40 &2800

11 6 40 &3000

11 7 40 &3800

11 8 40 &0

11 9 40 &800

11 10 40 &1000 R9

11 11 80 &1800

11 12 80 &2000

11 13 80 &2800

11 14 80 &3000

11 15 80 &3800  
 
In the example: 

 When C9 reaches R9 (=3), then the video pointer is updated with the one that has been 
memorized when C0=R1 and C9=R9. (R1=40) 

 R9 is modified with 10 while C9=4 
 When C9 reaches R9 (=10), then the pointer is once again updated, and therefore goes 

to 80. 

 Finally, when C9 reaches R5, vertical adjustment ends. 

11.2.3 CRTC 1, 2 
 
On these circuits, the C5 and C9 counters are dissociated. 
The C9=R9 management considers the video pointer (VMA'=VMA) when C0=R1. 
C9 is zeroed when C9=R9 and C4 is incremented. 
R9 update is considered for current C9 counting. 
 

CRTC 1, 2

C4 C9 C5 PTR-VRAM LINE

11 0 0 0 &0

11 1 1 0 &800

11 2 2 0 &1000

11 3 3 0 &1800 R9

12 0 4 40 &0 OUT R9,10

12 1 5 40 &800

12 2 6 40 &1000

12 3 7 40 &1800

12 4 8 40 &2000

12 5 9 40 &2800

12 6 10 40 &3000

12 7 11 40 &3800

12 8 12 40 &0

12 9 13 40 &800

12 10 14 40 &1000 R9

13 0 15 80 &0  
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If an additional line is added via the activation of the interlace function, this logic is not modified. 
The counting is done as if this line had been added to R5. 
 
Example: if you program R4=37, R9=7 and R5=7, then the value of C4 will be 38 during the first 
8 additional lines. The additional interlace line will then be part of the character C4=38. 
If R5 is programmed with 8 in this example, then the value of C4 will be 38 on the R5 Additional 
lines, and the value of C4 will be 39 on the additional interlace line. (once in 2 if parity is not 
frozen, since the additional line is added only at the end of a even frame). 
See chapters 19.3 and 19.5 concerning the notions of interlace and parity. 

11.2.4 CRTC 3, 4 
 
On CRTC’s 3 and 4, the C4 counter is not incremented when additional management begins.  
C4 is equal to R4. However, the video pointer is updated before the start of the additional lines 
(VMA'=VMA) when C0=R1. 
 
Additional management just set’s C9 to 0 and compare’s C9 with R5 to deactivate this 
management, without updating the video pointer. 
 
This "solidifies" the last character with the character generated in vertical adjustment, and the 
interlace line if it has been scheduled. 
 
In the previous example, the character C4=10 contains 16 more rows. 

11.3 UPDATING R5 DURING AN ADJUSTMENT 
 
Whatever the CRTC, if R5 is modified with C5+1 (or C9+1 on CRTC’s 0, 3, 4) on line C5 (or C9), 
then the vertical adjustment is "stopped". 
 
In this situation, C4=C9=0 for the next line (whatever the current value of C9), unless the 
conditions are present so that an interlace line is generated. 
 
The "latest line" state is then processed correctly and led to reset C4. 
 

11.3.1 CRTC’s 0, 2 
When the number of the next additional line (C5+1 on CRTC 2, C9+1 on CRTC 0) reaches R5,  
additional management R5 ends. 
 
The additional interlace line (R8) is managed if the conditions for its generation are respected. 
 
If R5 is modified with a value less than C5+1/C9+1, then the counter overflows and continues to 
count up to 0 to reach the new R5 value. 
 
Be careful however because on CRTC 0, the update of R5 is considered only when C0<3. In other 
words, if R5 is modified when C0>2 on the last line (C9+1=R5), then the value of R5 is not 
considered (C4 and C9 will then go back to 0). 
 
If no interlace line was scheduled, then C4 and C9 return to 0. 
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11.3.2 CRTC 1 
When the number of the next additional line (C5+1) reaches R5, additional management R5 ends. 
 
The additional interlace line (R8) is managed if the conditions for its generation are respected. 
 
If R5 is modified with a value less than C5+1, then the C5 counter is overflowing and continues to 
go back to 0 to reach the new R5 value. 
 
However, if the new R5 value is set to 0, this causes a bug that deactivates (slyly) the reset of 
C4 for the new frame. At the end of the additional lines, C4 is incremented and overflows. 

11.3.3 CRTC’s 3, 4 
 
When the number of the next additional line (C9+1) reaches R5, additional management R5 ends. 
 
The additional interlace line (R8) is managed if the conditions for its generation are respected. 
 
If R5 is modified with a value below C9+1, then the line is considered the last and additional 
management ends. 
 
Whether with R5 or R9, it is impossible to overflow C9. 

11.4 R5 UPDATE BEFORE AN ADJUSTMENT 

11.4.1 CRTC’s 1, 2, 3, 4 
R5 management is considered on each C0 position. 
 
On CRTC 1, the R5 update on C0=R0 triggers a bug, described in the next chapter. 

11.4.2 CRTC 0 
The R5>0 update after position C0>2 on the last line of the frame is not considered because its 
evaluation is completed. See Chapter 13.2. 
 
Unless an interlace line has been defined, the next line displayed will be C4=C9=0 (respect for the 
"Last Line" condition). 
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11.5 RUPTURE FOR DUMMIES (R.F.D.) ON CRTC 1 
 
On the CRTC 1, there is a very interesting bug when R5 is updated with a value different from 0 
on the position C0=R0 of some C9s when R5 is equal to 0. 
I name RFD the rupture technique that stems from this bug. 
 
Activating an RFD sets several statuses. 

 The first status defines the VMA update source (VMA' or R12/R13) when C0=0. 
 The second one activates parity management in the C9/R9 test carried out in IVM when 

C0 reaches R1 (and which allows the positioning of the VMA update state when the 
C9=R9 condition on C0=R1 is verified) 

 
The value of R5 is of little importance, except on certain CRTC 1’s for the value #10. 
This CRTC will be identified as 1-B while waiting to find out if the difference noticed really comes 
from the CRTC. The effect obtained by this value will be identified as RFD#10. 
CRTC 1-A is defined as CRTC 1 which does not support RFD#10. 
The additional management continues to be managed normally if R5 is not reset to 0 after the 
RFD has been triggered. If additional management is not desired for the frame, the reset of R5 
can be done at any position of C0 after the activation of the RFD. 
It is therefore possible to trigger an RFD via an "OUT R5,1", immediately followed by an "OUT 
R5,0" if it is only the RFD effect that is desired. If additional management and an RFD effect are 
desired, it is possible to do so by updating R5 once on C0=R0 with the number of additional rows 
desired. 
 
Common processing of C4 versus C9 is not affected. 
 
The RFD demonstrates that there is a state that allows CRTC 1 to accept consideration 
of R12/R13 at the start of the line regardless of the value of C4. 
 
As a reminder, on the first character of a frame, VMA is assigned with R12/R13 and is loaded with 
VMA' on the other characters. VMA' is itself loaded with VMA when C9 reaches R9 and C0 reaches 
R1 (to account for the advance of the offset on the next row relative to the BORDER). The update 
of VMA with R12/R13 or VMA' takes place from C0=0. 
 
VMA's update status via R12/R13 is usually true when C4=0, and then becomes false (VMA is then 
reloaded with VMA'). However, if for some reason the condition to test that the BORDER has been 
reached on the last line of the character is not met, then the VMA update status via R12/R13 
remains true regardless of the value of C4. 
 
It is important to note however that if the condition C0=R1 is not met (because R1>R0), then the 
condition C9=R9 is enough to deactivate the update of VMA with R12/R13. It is therefore not 
enough for R1>R0 to be able to modify the offset on each line. 
 
RFD sets another status of the IVM interlace which involves frame parity in the C9=R9 
equivalence. Thus, VMA update via R12/R13 is activated by the RFD and this state persists as 
long as the only true equivalence is C0=R1. However, the RFD does not modify the counting 
mode associated with the IVM mode. 
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In other words, this state remains active as long as the parity of the frame combined with the 
calculation mode of C9 comes into play on the comparative processing of C9. It is thus possible to 
end up with a situation equivalent to R1>R0 (See Chapter 17.4.2) while R1<R0. 
 
The C9=R9 "out of parity" condition continues to be processed normally for the 
calculation of C4 and the reset of C9. The RFD does not affect the counting mode of C9 but 
determines the comparative values of C9 when C0=R1 activate VMA assignment with VMA’ 
(instead of VMA=R12/R13). 

11.5.1 RFD AND FRAME PARITY 
 
The activation of an RFD implies a test of R9 carried out with the current parity. 
 
On the first frame (case 1), VMA' is no longer updated when C0 reaches R1 (because the test 
C9=R9 is faulty), and the characters are repeated. However, C4 continues to be managed 
whenever C9 reaches R9. VMA's update status is stuck on R12/R13, so it's possible to change the 
address on every line of every character, as if C4 was 0. 
 
On the second frame (case 2), VMA’ is updated when C0 reaches R1 and C9=R9. Parity no 
longer corrupts the test and therefore characters do not repeat because VMA is updated with 
VMA'. On this frame, a R12/R13 update is no longer considered as soon as VMA has been updated 
with VMA’ (so when C9=R9). A RFD triggered on the last line C9=R9 disables the state allowing 
VMA to be updated with R12/R13. However, the RFD#10 of the CRTC 1-B always allows, when 
C9=R9, to deactivate the parity management in the test C9=R9 (See next Chapter). 
 
C4 increments in both situations, because the frame remains perfectly synchronized on C4=R7. 
 
The switching of parity, which takes place once each time the frame starts (C4=C9=C0=0 and R9 
is odd), causes a stroboscopic effect between the two frames, except probably to position 
judiciously, at the right moment, R1>R0 so that all rows repeat equally on both frames. But we 
will see that such a subterfuge is useless because there is something simpler. 

11.5.2 IVM ON/OFF. 
 
As we have just seen, the repetition of the first character on the frame defined as case 1 is the 
consequence of a fault in the equivalence test C9=R9 allowing the assignment of VMA' (and which 
locks the VMA update status). This C9 test involves frame parity. According to this parity, the test 
allowing VMA’ assignment is assigned between each frame. 
 
It is however possible to fix the parity of a frame, knowing that this parity switches with 
each new frame (or some other specific cases. See Chapter 0).  
For example, it is enough to activate and deactivate the IVM mode with an odd R9 to set an 
even parity (OUT R8,3 followed by OUT R8,0). I will name this action "IVM ON/OFF". Be 
careful, however, to perform these updates on an even C9 because the C9 bit 0 can go to 0 on 
the line and therefore corrupt the counting if C9 was odd.  
 
If an "IVM ON/OFF" takes place before a RFD, then all the frames will contain lines for which 
VMA’ is no longer updated with VMA (case 1 mentioned in the previous Chapter). 
 
In other words, it is then possible to modify the offset on each line of the entire frame 
without any additional formality required. 
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If an "IVM ON/OFF" takes place after the RFD, then all the frames will contain lines for which 
VMA’ is updated each time C9=R9 (case 2 mentioned in the previous Chapter). In other words, it 
is possible to modify the offset until C9<>R9 from the line where the RFD is generated. The 
"IVM ON/OFF" having taken place after the R5 update, it is on the new frame that the even 
parity will switch to become odd and cause this management from the second frame 
and the following. 
 
On CRTC 1-B, value #10 in R5 deactivates parity management in test C9=R9, while other 
values activate this parity management (including value #10 on CRTC 1-A) . 
 
The brand and model of CRTC 1-B does not differ from other CRTC 1’s (UM6845R). 
This does not seem related to the batch number: the RFD#10 operates for example on a 6128 
UM6845R-8804T, but not on a 6128 with UM6845R-8802T. 
Out of 7 machines tested, 3 had this additional capacity. 
If you want to identify this capacity on a CRTC 1, you can use SHAKER 2.1 by running the 
SHAKE21B.BIN module, test "O". 
 
We can define that RFD: 

 Activates a status authorizing the update of VMA with R12/R13 when C0 = 0 (this status 
is disabled when the test C9 = R9 on C0 = R1 is true). 

 Active (or deactivates on the CRTC 1-B with RFD#10) a status authorizing the 
consideration of parity in the test C9 = R9 carried out when C0 = R1. 

 
When the IVM state which authorizes the consideration of parity in the test C9 = R9 becomes 
active with a RFD, it is no longer possible to deactivate it until the frame is finished. 
Therefore : 

 If a RFD activates this status, an RFD#10 can no longer deactivate it. 
 If a RFD #10 (CRTC 1-B) deactivates this status, a RFD "not #10" allows it to be 

reactivated. 
 
Note: The "Sync Interlace" mode (IS ON/OFF) does not allow (to my knowledge) for fixing of the 
parity of the frame. The alteration of processing between each frame is not impacted if R8 
changes between value 1 and 0 (or 2). 
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11.5.3 R.F.D. IN SUMMARY. 
 
Method to change the video pointer on a character without having to worry about R4 or R7. 

 On C0=R0, change R5 from 0 to 1 on any line different from C9=R9 for a C4 where the 
offset must be modified. 
- OUT R5,1+OUT R5,0 

 Modify R12/R13 on the line before the R5 update. 
 Make R8 go from 3 to 0 once on an even C9 line. 

- OUT R8,3+OUT R8,0 
 
Method to change the address on each line. 

 Wait for a new frame (C4=C9=0). 
 Make R8 go from 3 to 0 once on an even C9 line. 

- OUT R8,3+OUT R8,0 
 On C0=R0, change R5 from 0 to 1 on any line 1 time for the frame. 

- OUT R5,1+OUT R5,0 

 Modify R12/R13 on the line preceding the one where the address must be modified. 
 

This method is not a conventional RLAL, insofar as C9 participates in the construction of the video 
pointer. C9 is always 0 in RLAL. It is always possible to duplicate the video ram of the different 
C9s, but this implies a serious consumption of the ram according to the value of R9 programmed. 

11.5.4 R.F.D. AND OTHERS CRTC 
 
Page 120 of the HITACHI technical guide (CRTC 0) contains a table showing the anomalies that 
can occur when certain registers are modified during the display. Concerning R5, it is particularly 
indicated that if an update of R5 takes place on C0=R0, then there are "certain cases" where R5 is 
not really considered...Really ? 
 
The contradictions in this table are a real playground! 

11.6 R6 AND VERTICAL ADJUSTMENT 
 
When C4 reaches R6, the display of the data is stopped. 
R6 must be positioned according to the values reached by C4 to display the corresponding 
characters generated during the adjustment.  
 
On CRTC 1 there is special management of R6 when it is 0, which allows for the activation of the 
BORDER in a non-definitive manner.  
 
This particular treatment is also managed by CRTC 1 in vertical adjustment. 
 
The technique which uses this management is called "split-border". 
This technique is possible on CRTC’s 0, 3 and 4 using an R8 function (See Chapter 19.2, page 
182). 
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11.7 ADJUSTMENT DURING INTERLACE 
In interlace mode, R5 lines are added to the frame. 
 
On CRTC 2, it is quite logical, because this CRTC does not require, as for the other CRTC, an R4 
update to double the number of characters displayed (since each character contains 2 times less 
lines in interlace mode) and an adaptation of the registers associated with C4, such as R6 and R7. 
 
On the CRTC’s 0,1,3 and 4, R5 lines are added on each frame. 
 
If, for example, we have 38 characters of 8 lines and 8 additional lines, you must program R4=37 
and R5=8 (38 x 8 + 8 = 312). If we switch to an IVM interlace mode (R8=3), it is necessary to 
keep the same number of lines, double the number of characters displayed. R4 must therefore be 
equal to 75. (38x2 – 1) 
 
However R5 must remain at 8 : 76 x 4 + 8 = 312. 
 
In all cases, the C9/C4 counters continue to evolve according to the interlace treatment logic 
associated with the lines according to the CRTC (See Chapter 19.8). 
 
For example, on CRTC 1 in the previous example, C4 will increment 2 times during the R5 
adjustment period because for each C4, there will be 4 C9. 

11.8 INTERLACE ADJUSTMENT LINE 
 
In INTERLACE mode, a specific vertical adjustment management is carried out which results in an 
additional line on each even frame. This adjustment occurs in very specific conditions, which 
depend on the state of R8 but also on the current parity of the frame. 
 
See Chapter 19.3, page 187. 
 
This adjustment is independent of that made via R5. When the adjustment condition is filled, the 
"Interlace" line is added after the lines possibly scheduled in R5. 
 
The adjustment condition (interlace mode (IVM/non-IVM) activated and even frame) is evaluated 
on the last line of a frame, when C0=R0, and only if R8 contains the right value on the last line. 
This latest line can be one of the adjustment lines displayed via R5. 
 
It is therefore possible to update R8 on one of the lines displayed via R5 to activate or deactivate 
the treatment of the interlace line. 
 
On CRTC 2, if the interlace mode is disabled (R8=0) while the "Interlace" line is displayed, then 
the "Last Line" condition is cancelled. The current line is no longer considered as an interlace 
line. C9 then continues to count to R9, and C4 is increasing if it is different from R4. It is perfectly 
possible to reprogram R4 with C4 (equal to the old R4+1) in order to reactivate the "Last Line" 
state when C9 reaches R9. 
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12 COUNTING : REGISTER R4 

12.1 GENERAL 
 
The CRTC's R4 register defines the number of "character lines" to be displayed. A character-line is 
composed of several raster-lines, the number of which is fixed by the register R9.  
See Chapter 10, page 71. 
 
The line and character are numbered starting from 0.  
The number programmed represents a value to reached. 
 
When all lines of a character are displayed (C9=R9), then C4 is incremented (the counter returns 
to 0 if C4 was R4 before being incremented). 
 
The value of C4 is compared with R7 to trigger VSYNC and compared with R6 to trigger BORDER.  
 
Note however that the Interlace mode of the CRTC delays the triggering of the VSYNC. 
 
When C4=R4 and all the rows of the last character are displayed, additional row management can 
optionally begin if R5 > 0 or Interlace mode is enabled. 
 
Note that except for CRTC’s 3 and 4, additional lines via R5 continue to increment C4 (which 
therefore exceeds R4 in this situation). 
 
It should also be noted that this management of additional line(s) must be triggered when R0<2 
on CRTC 0. 
 
When C4 changes to 0 (and while it is 0 on CRTC 1), VMA is updated with R12/R13 content. 
 
On CRTC 2 however, VMA is updated with VMA', which is itself updated with R12/R13 when 
C0=R1 from the last line (when C9=R9). 

12.2  CRTC 0 
 
When C0=0, the CRTC assesses whether C9=R9 and C4=R4 to determine if it is on the last 
line of the frame. It no longer repeats this test on the other values of C0. 
 
It is not necessary to anticipate the programming of R4 on the previous line so that C4=R4 at the 
beginning of the next line. By positioning an OUT R4 on C0vs=#3E (if R0=#3F), R4 is updated 
when C0=0 to satisfy the "Last Line" test. This allows compatibility with other CRTC’s. Note that 
this is also true for R9 if the C9=R9 condition is the only one that is missing for the "Last Line" 
test on the new line. 
 
If the CRTC has determined that it is on the last line of the frame, C4 will change to 0 no matter 
what happens (as well as C9). If R4 and / or R9 are modified during the line when C0>1 while it is 
the last line, it does not change anything for C4 which will therefore return 0.  
 
If the CRTC determines that it is not on the last line (but that R9 was modified with C9), C4 will be 
incremented no matter what happens. 
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If R4 and/or R9 are updated during a line but not the last line, it does not change anything 
for C4 which will be incremented (when C9=R9). These are the increased values of the C4 
and C9 counters which are tested on C0=0. 
 
When the last line of the frame is reached: 

 Modifying R4 with C4 does not prevent C4 from incrementing if C9=R9 (if the goal was 
to increase it to 0). 

 Modifying R4 with 0 while C4 is equal to R4 does not prevent C4 from returning to 0 (if 
the goal is to make it overflow). 

 
The "Last Line" test is done at the beginning of the line, so it is necessary to anticipate the 
update of R4 and R9 according to what you want to achieve in C4. 
 
Note that C9 can only overflow in a particular context (when R0=0). 
 
The C4 counter can increment beyond the value set in R4 in several cases: 

 If R4 is updated with a value less than C4 or has been incremented under the conditions 

described above, then C4 will "overflow". In other words, it will increment to its 

maximum value (127) before looping (if a new update of R4 does not occur before). 

 C4 may also exceed the value of R4 when additional vertical line management is 

requested. This event can occur when R5>0  (or R5=0 with R0<2), or if INTERLACE 

mode is enabled on even frames (See Chapter 19.3, page 187). Note that if C4 exceeds 

R4 on at least one of these events, it will return to 0 once the additional 

management is completed 

12.2.1 CASE STUDY : LINE-TO-LINE RUPTURE (R.L.A.L.) 
 
The objective of this technique is to obtain consecutive lines for which C9=C4=0, in order to be 
able to modify the address via R12 and/or R13. 
For the following two examples, the registers R4 and R9 are considered to be greater than 0. 
 
From the first line of a frame: 
If R9 and/or R4 are positioned at 0 when C9=C4=0, this line will not be considered the last on the 
frame (the test took place when C0=0). 
On this second line, C4 will then be incremented (C4 = 1). And C9 will go to 0. 
At the beginning of this second line, C4(=1)<>R4(=0). C9=R9=0.  
The CRTC will therefore increment C4 regardless of the value that is programmed in R4,… 
 
If, on line 1, we program R4=1 and R9=0 (instead of R4=0 and R9=0), things will go better. If 
this line has not been considered the last, C4 will increment on the second line (C4 = 1) (and C9 
will be equal to 0). 
 
However, the test that took place at the beginning of line 2 indicates that it was the last one 
(C4=R4=1 and C9=R9=0). C4 will therefore increase to 0 on the third line.  
 
But if we want this third line and all the others to be considered as the last, we must …. 
…. change R4 with 0 on the second line. And that's it. 
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From the last line of a frame (C9=R9 and C4=R4): 
If R9 and R4 are updated to 0 when C9=R9 and C4=R4, this line is already considered the last. 
On the new line, C9 and C4 have both changed to 0, but not because of the modification of R9 or 
R4 or any "buffering". 
 
At the beginning of this line between C0=0 and 1, the condition C9=R9=0 and C4=R4=0 is true.  
This line and the next ones will be considered as the last ones. 
 
Note : When C9 becomes equal to R9 (last line), it is necessary to wait until C0=2 to modify R9, 
because CRTC 0 requires special treatment with C0=0 and 1 to manage C9 and disable in 
particular the additional line management enabled by default. 
 
C4: 0

C9: 7

C0: 0 1 2 3 4 5 6 7 8 9 10 11 12 … 58 59 60 61 62 63

R9: 7 7 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0

R4: 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0

OUT R9,0 Update R12/R13 before C0=0

 
How do we get out? 
To stop getting lines C4=0 and C9=0, it is necessary to modify R4 and/or R9. Since each line is 
also a "Last Line", C4 and R9 will be reset to 0 on the next line, regardless of the update of R4 
and/or R9. (Because C4 will be forced to 0, and de facto C9 also). 
 
With a view to common code for CRTC 2, it is advisable to: 

 Modify R12/R13 before C0=R1.  
 Manage the update of R9 during HSYNC as described in Chapter 12.4.2. 
 Do not set R2=0 (so that the BORDER does not remain activated). 

12.3 CRTC 1 
 
If R4 is updated with the value of C4: 

 If we were on line C9 between 0 and R9-1, then C9=C9+1 (C4 will go to 0 when C9 
goes back to 0 and the offset (R12/R13) will be considered). 

 If we were on the last line (C9=R9), then C9 goes to 0, C4=0 and R12. R13 is 
considered. 
 

If R4 is updated with a value less than C4, then C4 will increment to its maximum value (127) 
before looping back. 
 
Unlike CRTC 0, putting R4=0 on the last line of a screen will cause an "overflow" of C4, the value 
0 being handled as a general case. 
 
If we want to put R4 to 0 so that C4 loops to 0, we must do it only when C4 = 0. 
 
Creating a line-to-line rupture on this CRTC is trivial.  
Simply set R4 and R9 to 0 when C4 and C9 are both at 0. 
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12.4 CRTC 2 

12.4.1 LAST LINE CONCEPT 
 
As on the CRTC 0, there is a concept of "Last Line" which irremediably arms the reset to 0 of C4 
and C9 on the following line. 
 
When this "Last Line" state is set, it can no longer be modified. 
 
This means that if this "Last Line" state is true, then C4 and C9 will change to 0 on the next line, 
regardless of the values subsequently programmed in R4 and R9 during the rest of the line. 
 
The "Last Line" status is evaluated at the start of the line (at position C0=0) or during an 
update of R4 and/or R9 if a "Last Line Management" status is true. 
 
If C4<>R4 or C9<>R9 on position C0=0, then the "Last Line" state is false. 
The "Last Line Management" state is true unless C4=0 and C9=0 (in which case it is 
false). In other words, if we are not on the last line at the start of the line, it will be possible to 
update the "Last Line" state during the line (by modifying R9 and/or R4 outside of a HSYNC), 
except if we are on a first line (C9=C4=0) (in this case the updates of R9 and/or R4 are not 
considered when evaluating the “Last Line” state). 
 
The "Last Line Management" state allows, if it is true, to evaluate the conditions of the "Last 
Line" state on positions C0>0 from an update of R9 and/or R4. There is an exception to this 
rule, if the R9 and/or R4 update that satisfies the "Last Line" condition occurs during a HSYNC 
(the "Last Line" state remains false). 
 
If C4=R4 and C9=R9 on position C0=0, then the “Last Line” state is true (the “Last 
Line Management” state is false). However, there are 2 exceptions for which the "Last Line" 
state is false: 

 If the previous line was a last line. A state (yes, another one) "Last Previous Line" is 
managed on the last position C0 of the HSYNC. 

 If a HSYNC takes place on position C0=0. 
 
During a HSYNC, a test is performed on position C0=R2+R3-1, in order to determine if line N is a 
last line for line N+1 (at C0=0). Thus, if C4=R4 and C9=R9, then “Last Previous Line” is true, 
otherwise it is false. 
 
Furthermore, if C4<>R4 or C9<>R9 on this last position of the HSYNC, this updates the "Last 
Line Management" state by setting it to true. Thus, if "Last Line" was false and its 
management also because of an "already last" previous line (evaluated during the HSYNC), this 
makes it possible to force the re-evaluation of the last line in order to circumvent the exception on 
the C0 positions>=(R2+R3) 
 
When the "Last Line" state is true, nothing can prevent C4=0 (and C9=0) from passing to the 
next line, unless an additional line is programmed via R5. If R5 is programmed with a value 
greater than 0 at any position of C0, then the additional lines programmed in R5 will precede the 
reset of C4 and C9. When displaying these additional lines, C4 will be incremented (overtaking 
R4)(See Chapter 11.2.3). 
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If an objective is to maintain the reset to 0 of C4 and C9 on each line, it is possible to force the 
“Last Line” state on a first line, by creating the condition at the end of HSYNC which allows it to 
be considered. 
 
In other words, it is enough to authorize the management of the "Last Line" on the last 
character of the HSYNC to allow this CRTC to manage the resetting to 0 of C4 as expected. 
Modifying R9 wisely before and after HSYNC achieves this goal. 

12.4.2 CASE STUDY: LINE-TO-LINE RUPTURE (R.L.A.L.) 
 
The objective of this technique is that all the lines displayed start with C4=0 and C9=0, so that 
the registers R12 and R13 are modified before C0=R1 is considered. 
 
Suppose we are on the “Last Line” of a frame with C4=R4 and C9=R9 (R4 and/or R9 are greater 
than 0). We know that on the next line, C9=0 and C4=0, but we want that for the next lines, C9 
and C4 are also at 0 (and be able to change the address via R12 / R13). 
 
It will be necessary to reprogram R9 and R4 with 0 so that the last line condition is active on 
each line. Each new line will be a first and last line of the frame. 
 
For this example, the HSYNC will be positioned where C0=1 (via R2=1).  
 
Consideration should be given to constraints related to other management flaws during HSYNC, 
such as not enabling the VSYNC pin and disabling the BORDER on C0=0. 
 
We will consider that this HSYNC will have the minimum time necessary for a horizontal 
synchronization, namely 6 μsec (via R3 = 6) because it will be necessary to modify R9 twice.  
This may as well be done as soon as possible when the index on the CRTC register is already 
selected. 
 
If C9=C4=0 and the “Last Line” condition is true on the last character of the HSYNC, then the 
“Last Line” state can no longer be managed. By modifying R9 during HSYNC so that the last line 
condition is false, it is possible to authorize this management of evaluation of the "Last Line" 
state. By modifying R9 with a value other than that of C9, it is possible to activate the "Last Line 
Management" so that it can be considered. 
 
Once the HSYNC is complete, returning the value of R9 to the same as that of C9 (so 0), allows to 
indicate what the correct limit of C9 is, so that the condition "Last Line" is treated correctly. 
 
Example with 3 lines: 
1st line : 
It is assumed here that C4=R4=0 and C9=R9=7, and the HSYNC is shown in orange : 

R2

C4: 0

C9: 7

C0: 0 1 2 3 4 5 6 7 8 9 10 11 12 … 58 59 60 61 62 63

C3: 1 2 3 4 5 6 R1

R9: 7 7 7 7 7 7 7 0 0 0 0 0 0 … 0 0 0 0 0 0

R4: 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0

OUT R9,0 Update R12/R13 before C0=R1
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This line is considered the last line of the frame because C9=R9 and C4=R4 when C0=0. This 
"Last Line" condition is true because there is no HSYNC on C0=0 and the previous line (C9=6) 
was not a last line (evaluation made at the end of HSYNC of C9=6). 
R12 and/or R13 are modified before C0=R1 so that VMA' is updated with R12/R13 because we 
are... on the last line. 
 
Note 1 : This assignment of R12/R13 depends on the "last line" state when C0=R1 (and not on 
the equality C4=R4 and C9=R9 which positions this state). This implies that changing R9 before 
equality C0=R1 does not prevent this assignment. 
 
Note 2 : Changing R9=0 on this line is no longer considered for the “Last Line” state because 
this state has already changed to "true". It will however possible to create the "Last Line" 
condition on C0=0 of the following line. 
 
2nd line : 

R2

C4: 0

C9: 0

C0: 0 1 2 3 4 5 6 7 8 9 10 11 12 … 58 59 60 61 62 63

C3: 1 2 3 4 5 6 R1

R9: 0 0 0 1 1 1 1 0 0 0 0 0 0 … 0 0 0 0 0 0

R4: 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0

OUT R9,1 OUT R9,0 Update R12/R13 before C0=R1

  

On this first line 0 (C4=R4=C9=R9=0), the “Last Line” state is true. 

However, since the "Last Line" condition has not changed during the previous HSYNC, the 
previous line is considered a last line. As such, the current line is no longer considered as a last 
line unless the "Last Line Management" is reactivated during the HSYNC (via the condition 
C4<>R4 or C9<>R9 on the last position of the HSYNC). 
 
Thus, on C0=6 (last character of the HSYNC) the test C9(0)=R9(1) is false. 
This unlocks the “Last Line” evaluation. 
The OUT R9,0 has the effect of modifying R9 when C0=7 and the HSYNC is finished. 
 
On C0=7, the CRTC triggers the reset of C4 and C9 to 0 (“Last Line” condition satisfied). This 
reset to 0 of C9 (and of C4) can then no longer be "cancelled". 
 
If, in the example above an OUT R9,10 was added behind the OUT R9,0 (R9 would be updated 
with 10 on C0=11), it would not change anything for C9 and C4, which would return to 0 on the 
next line. 
 
Thus, on the 3rd line we will have C9=R9=0 and C4=R4=0. 
 
Note 1:  
If the HSYNC had been positioned after the R9 update with 0 on the 1st line, then it would not 
have been considered as a last line when evaluating C9=R9/C4=R4 at the end of HSYNC on line 
C9=7. It would then not have been necessary to modify R9 during the HSYNC of line 2 for the 
"Last Line" state to remain armed for the 3rd line. 
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3rd line : 

R2

C4: 0

C9: 0

C0: 0 1 2 3 4 5 6 7 8 9 10 11 12 … 58 59 60 61 62 63

C3: 1 2 3 4 5 6 R1

R9: 0 0 0 1 1 1 1 0 0 0 0 0 0 … 0 0 0 0 0 0

R4: 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0 0 0 0 0 0

OUT R9,1 OUT R9,0 Update R12/R13 before C0=R1

This line does not pose any problem either, because the "Last Line" condition is again false on 
C0=6 (HSYNC) and becomes true on C0=7 when R9 goes to 0 (to satisfy C9=R9/C4=R4 
(Excluding HSYNC)). And so on... 
 
Note 1 : For practical reasons it is perfectly possible to move the OUT R9,1 instruction by 4 μsec 
(on C0=4) (R9 is different from C9 on C0=R2+R3-1). 
 
Finally, just as on CRTC 0 to "get out" of "Last Line" treatment, it must be remembered that 
when R9 is put back at a value greater than 0, this value is no longer considered if the CRTC 
considers that it is on a last line.  
 
It will put C9 and C4 back to 0 on the next line, as CRTC 0 would. 
 
If the “Last Line” condition was left active during the last HSYNC (there were two last lines with 
the same C9/R9), C9 will be treated in relation to the value of R9. C9 will be incremented if 
C9<>R9 as would be the case for a CRTC 1, but C4 will be unconditionally incremented if C9=R9 
(and C9 will return to 0).  
 
With a view to common code for CRTC 0, it is advisable to: 

 Treat the update of R9 on the last line as on the previous lines so that the next line is 
considered a last line, in order to ensure compatibility with the "Last Line" operation of 
the CRTC 0.  

 Do not modify R9 before C0=2 for the same reasons. 
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12.5 CRTC 3, 4 
 
If R4 is updated with the value of C4: 

 If we were on the line C9 between 0 and R9-1, then C9=C9+1, C4 will go to 0 when C9 
will return to 0 and the offset (R12/R13) is considered. 

 If we were on the last line (C9=R9), then C9 goes to 0, C4=0 and R12/13 are 
considered. 

 
The modification of register 4 is considered immediately at the end of the line. 
 
If we want to put R4 to 0 so that C4 loops to 0, we must do it when C4 = 0. 
 
If R4 is updated with a value less than C4, then there is overflow of the C4 counter. (unlike what 
happens with C9/R9).  
 
It should also be noted that additional management of vertical lines does not increment C4 
beyond R4 as occurs with CRTC’s 0, 1 and 2. 
 
Creating a line-to-line rupture on this CRTC is even more trivial than on CRTC 1, because you 
simply set R4 and R9 to 0 when C4=0.  
 
Indeed, C9 increases to 0 if C9>R9 which improves the level of compatibility between CRTC’s 0 
and 1.  
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13 COUNTING : REGISTER R0 

13.1  GENERAL 
 
The CRTC's R0 register is used to define the number of characters which the circuit will generate 
on a line. A C0 counter (also called HCC by some eccentrics :-)) counts from 0 up to and including 
the value of R0. This register contains the desired number of CRTC characters per "line" minus 1. 
 
When C0 is reset to 0, different counters are updated (C4, "C5", C9, ...). 
      
The C0 counter is also comparable to R1 (border/video pointer management) and R2 (HSYNC 
management).  
 
One might expect the condition Cx=Rx to define the incrementing or resetting of other counters. 
 
However, if C0 does not reach certain values defined internally, this poses some problems, 
especially on CRTC 0 because processing take place on specific values of C0. 
 
The purpose of this processing is to allow the reset of counters or simply to manage the 
increment of other counters. 
 
It is worth recalling that there is a discrepancy between the CRTC’s internal registers and the 
actual display of the corresponding characters by the GATE ARRAY and/or ASIC. The CRTC 
counters are ahead of the GATE ARRAY display. 
 
The GATE ARRAY does not respect this "shift" to generate the HSYNC’s. Thus, the HSYNC occurs 
on the C0 of the “CRTC” and not that displayed by the GATE ARRAY. 
 
ASIC’s, however, respect this delay to generate the HSYNC when the character corresponding to 
C0=R2 is displayed, which corresponds to C0+1 of the CRTC. 
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13.2 CRTC 0  

13.2.1 THE FIRST 3 MICROSECONDS 
 
This CRTC performs operations on precise positions of C0 (arming resets and increments of 
counters, inhibition of processing). 
     
The detail of this operation is necessary to better understand the specific processing of resetting 
C4 to 0, which only occurs when the CRTC assesses that it is on the last line of the frame. 
  
The designers of the circuit probably "preferred" to manage under conditions a reset of C4, 
because this counter was planned to exceed R4 on all CRTC’s "not-ASIC’d".   
       
This is particularly the case when R5 is greater than 0 (it then becomes the new limit of C9+1) or 
when the Interlace mode is active during an "even" frame. 
 
These different “tests” were spread over several values of C0: 

 When C0=0, then counters C4 and C9 are updated according to states decided on the 
previous line. Then the counters are evaluated to schedule their update on the next line. 
If C9 has reached R9 then C4 will be programmed to be incremented on the next line. If 
an additional management is in progress, then if C9 has reached R5, C9 returns to 0. 
Note that this evaluation of C9 takes place only once for the line (this management of 
C9 is deactivated once carried out). The incrementing of C4 will eventually be cancelled 
on C0=2 if this line was not the last on the frame (C4<>R4) or if there are additional 
lines to add (R5>0 and/or Interlace Line “on”)     

 When C0=1, then the management of C9 is again authorized for the next C0=R0. If 
this "authorization" is not given (context R0=0) then counter C9 is no longer managed 
on the next C0. If R0 is set to 0 on position C0=0, C9 is previously updated with respect 
to the last value of R9 if R0 of the previous line was >1.  

 When C0=2, the CRTC determines if additional line management should take place. If 
this additional management is activated, then C4 will be incremented whatever the 
value of R4 for the next C0=0. Otherwise, both C4 and C9 will return to 0 

Therefore : 
 
 If R0=0, then C0 never reaches 1 (and therefore remains at 0) and C9 can no longer 

count. It then remains frozen with the value it had before R0=0. 
- If C9<>R9 on the first C0=0 for which R0=0, then all of the CRTC counters are 

frozen as long as R0=0. For example, freezing R0=0 for 64x8 µsec amounts to 
“forgetting” 8 lines (C4-1 if R9=7) 

- If C9=R9 on the first C0=0 for which R0=0, then C4 is incremented once on the 
second C0=0. C4 is only incremented once because the additional management is 
"deactivated" only on C0=2 (an additional management therefore only increments 
C4 once, because it deactivates the management C9=R9 to switch on C9+1=R5 
management). After this second C0=0, all of the CRTC counters are frozen as 
long as R0=0. 
 

Note 1 : Since C9 management takes place only once if C0 does not exceed 1, updates to 
registers R4, R5 and R9 are no longer considered as long as R0=0. On the other hand, R8 
continues to be considered each time C0=0. 
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 If R0=1, then C0 never reaches 2, and the additional management of line(s) decided in 
C0=0 remains engaged if C4=R4 and C9=R9 on the previous character (C0=0). C9 can 
increment according to R9. If R5=0, the additional management then lasts 1 line before 
ceasing (C4+1, C9=0). On the next line, the end of additional management reset C4 and C9 
to 0. 

 
The conditions for resetting C4 to 0 are therefore multiple :      

 When C0=0, C4=R4 and C9=R9 conditions the "Last Line" state, which then activates 
an "additional management" state for which C4 is incremented unconditionally only 
once. Note that during this additional management, C9 continues to be tested with R9 
for the update of VMA/VMA'. 

 When C0=2, if there was no additional line pending, the additional management state is 
deactivated (R5=0 or “Interlace Line” allows it to be determined) which prevents C4 
from being incremented for the addition of additional lines 

 
Failing to meet all these conditions after C0>2, C4 will be incremented when C0 returns to 0. In 
other words, modifying R4 or R9 after the tests are performed will not change anything 
regarding the C4 result. 
 
If the CRTC was not on the last line (or having modified R4 or R9 before C0=0), the fate of C4 is 
already sealed: C4=C4+1.  
 
If R5 is programmed on the last frame line with a value greater than 0 before C0=3 (C0=0, 1 or 
2), then R5 additional lines will be considered (with C4=R4+1 on the following line). On the 
other hand, if R5 becomes greater than 0 when C0>2, then no additional line will be 
added to the frame. The next line will correspond to a new frame with C4=C9=0. 

13.2.2 FREEZE OF VSYNC 
 
Other operations take place on the CRTC 0 between the values 0 and 2 of C0. 
Particularly to determine if a VSYNC will be authorized for the next occurrence of C0=0. 
 
Each time C0=2, a state validates the update of C4=R7 on the next C0=0. This state is cancelled 
when C0=0. 
 
Thus, if R0 is modified with a value lower than 2 on the line preceding the equivalence C4=R7 (On 
the line where C9=R9 and C4=R7-1), the VSYNC will not be authorized on C0=0. This will also 
cause the VSYNC to block for the value C4=R7. 
 
A modification of R7 when C0<2 having the purpose of "triggering" a VSYNC after C0=0 (when 
C4<>R7) will also cause the blocking of the VSYNC for this value C4=R7. 
 
Unblocking the VSYNC is then no longer possible for this value of C4, except for two specific 
conditions. See Chapter 16.3 for more description of these conditions. 

13.2.3 FREEZE OF ADDITIONAL ADJUSTMENT LINE 
 
If an additional line is programmed (R5=1 for example), we will have on this line C4=R4+1 and 
C9=0. If R0 goes to 0 on C0=0 of this line, then C9 remains fixed at 0 and C4 can only go to 0 
when C9 is managed again (as soon as C0=1).  
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C4 and C9 remain fixed as for a "non-additional" line for which C9<>R9. Modifying R5 for a period 
during which R0=0 has no effect on the value of the counters while C0 remains at 0, because C9 
is no longer managed in relation to R5 as long as C0 has not returned to 1. 
 
Note that when C9 management is inhibited, the update of both R9 and R4 are also ignored while 
R0=0. 

13.2.4 FREEZE OF C9 
 
The fate of C9 is specific when R0=0 since it is no longer incremented. 
On the first step of C0=0, when R0 becomes equal to 0, the value of C9 is calculated for the first 
time with respect to R9 (for example if C9 was worth 4 and R9=7, C9 goes to 5). 
 
On the first C0=0 : 

 The CRTC manages different updated states on previous C0=0,1,2 to update C4 and C9 
on C0=0. Each state is cancelled once the counter is updated. In principle, 4 states are 
possible : 
- Counting C4 
- Reset C4 
- Counting C9 
- Reset C9 
Note that the processing of the status of C9 and its management of counting is 
subordinated to another status of 'management C9'. 

 Tests are performed to determine the next states of C4/C9, specifically with respect to 
counting management C9/R9 or with respect to that of C9/R5 if additional management 
is decided (in this case, it is the value of R5 with respect to C0 which is used to set the 
end of the additional management) 

 Additional management is decided if C4=R4 and C9=R9. It would in principle be 
confirmed on C0=2 if C0 managed to reach this value. 

 C9 processing management is disabled. It would in principle be activated on C0=1 if C0 
succeeded in reaching this value. 

 
On the second C0=0 

 The management of C9 has not been reactivated (because C0 has not reached 1). The 
value of C9 therefore remains the same as that which it had on the first “C0=0” 

 Two situations then arise : 
- If C9 had reached R9 on the first C0=0, then the reset of C9 had been armed as well 

as the increment to C4. With C9 being frozen, only C4 will increment. 
- If C9 was different from R9 on the first C0=0, then the increment to C9 will have 

been armed (but not the increment to C4). With C9 being frozen, no counter will 
have been moved. 

 
On the third C0=0 (and the following ones) : 

 The management of C9 has not been reactivated (because C0 has not reached 1). The 
value of C9 therefore remains the same as that which it had on the first “C0=0”. 

 In the situation where C4 has been incremented on the second "C0=0", this increment 
is deactivated because it has taken place. All counters are frozen. 
 

Reminder : R5 is the quantity of line(s). It is therefore the value C9+1 which is compared with R5, 
while R9 is a value of C9 to be reached. R5=0 indicates that there is "in principle" no line. 
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If R0 is modified to become greater than 1 again, increment management of C0 resumes 
normally without the other counters being affected. 
 
However, if the conditions of a last line are satisfied during C0=0, then C9 will no 
longer be managed with R9 but with R5. Going through C0=2 does not cancel it. 
It will stop only when C9+1=R5 on C0=0. 
 
The vertical adjustment management has 2 particularities on the CRTC 0:    

 C4 is incremented only once, whatever the value of R5.  
C4 returns to 0 once the adjustment is complete, whatever the value of R4. 
This means that C4 is no longer managed when C9 reaches R9 during an additional 
management. Note however that the CRTC continues to manage VMA/VMA’ transfers 
specific to C0=R1 when C9=R9. (See Chapter 11, page 78) 

 
Note : On CRTC’s 1, 2, 3 and 4, the "Last Line" assessment takes place during all C0 values, 
whereas CRTC 0 only manages it on C0=0 (and completes the status on C0=2). 
However, CRTC 2 arms a last-line reset to 0 that can no longer be disarmed afterwards, 
regardless of the values of R9 and R4. Respecting the strongest constraint, if R4 is changed so 
that its value is updated to C0=0 (OUT triggered on C0vs=#3E on CRTC’s 0, 1, 2 and on #3D on 
CRTC’s 3, 4 for R0=#3F) then only one instruction is required without adaptation to the code. If, 
however, it is also necessary to modify R9, which is part of the "Last Line" conditions, it is 
necessary to anticipate its update. 
See Chapter 12, page 88, and Chapter 10, page 71. 

13.2.5 CASE STUDY: R0=1 
 
When R0 is 1 (and C0<2) we obtain "lines" of 2 characters (2 μsec). 
 
If C4=R4 and C9=R9 when C0=0, then we are potentially on the last line of the frame. But C0 not 
having reached 2, the additional line management is not disarmed and will take place. 
 
If C4=R4 and C9=R9, then the "frame" ends when C0 reaches R0. This is particularly the case 
when R4 and R9 are 0, to create "frames" of 2 μsec.  (The first line is then also the last) 
 
Therefore :      

 When C0=0, the CRTC assesses whether it is on the last line, and if so, arms an internal 
flag by default to trigger vertical adjustment.   

 When C0=2, the CRTC assesses the conditions for disarming this vertical adjustment 
mechanism (in particular by testing the value of R5). 

 
Consequently : 

 If C0 never exceeds 1, and R4=R9=0, the CRTC generates a "1 line" vertical adjustment 
every "frame" when C4=R4 and C9=R9. 

 The CRTC can no longer disarm the additional management (test of R5 and/or 
“Interlace on even frame programmed”) and a 2 µsec "frame" is generated. This results 
in a one-time increment of C4 beyond the value programmed in R4. However, the 
adjustment stops after 1 line. For some reason I haven't determined yet, C9 (not 
C9+1) is compared to R5 to stop the adjustment. 
Note: C4 and C9 return to 0 when the adjustment is complete 
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When R4=R9=0, each "line" of 2 µsec is therefore immediately followed by a "line" of 2 µsec for 
which C9=0 and C4=1. 
 
Once this "additional" line of 2 µsec is completed, C4 and C9 reach 0 and the offset is updated. In 
this situation, the R12/R13 registers can therefore be considered “only” after 4 µsec, whereas this 
is possible every 2 µsec on a CRTC’s 1, 2, 3 or 4 (and even 1 µsec when R0=0 on these CRTC’s). 
If R9>0, this "line" of 2µsec (for which C4=1) occurs after the last value of C9 (when C9=R9). 
 

13.2.6 CASE STUDY: R0=0 
 

When R0 is 0 and C0=0, then C0 remains at 0 (frame or line of 1 µsec).  
 
Things get a bit more complicated: 

 C9 is frozen 
Since C0 never reaches 1, C9 is no longer managed. 
If, for example, it was equal to 3 when R0 went to 0, it will remain at 3 regardless of 
the value of R9, as long as R0=0  

 C4's last hiccup 
If C9=R9 on C0=0 (when R0 goes to 0) then C9 is no longer managed, but C4 will 
however be incremented regardless of the value of R4. C4 is incremented without C9 
returning to 0. Magical ! 
After that, no more counter will be managed except C0. 

 Additional management 
If C9=R9 and C4=R4 (when R0 goes to 0), then we are in the same situation as in the 
previous paragraph, except that an additional management is activated, and which will 
remain so when C0 can once again exceed 1. It is then R5 which controls the end of the 
additional management. To stop this management, program R5 with C9+1 
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To summarize : 
 

C9 remains "frozen" with the value it had before R0=0 and therefore no longer 
increments, nor returns to 0.    
If C9=R9 and C4<>R4 then C4=R4+1. When R0>0, C4 continues to be managed via C9/R9. 
If C9=R9 and C4=R4 then C4=R4+1. When R0>0, C4 is managed by C9/R5. 
In the other cases, C4 remains fixed  

 
Example  
Context : C0=R0=C4=R4=C9=R9=R5=0 

Counters C0 C9 C4 

1st character C0=0 0 0 0 

The current video pointer is updated. CRTC-VMA’=CRTC-VMA=R12/R13 
When C0 loops first time on R0, C0 goes from 0 to … 0. C4=0. 
The CRTC is at the end of the "frame" (it has just finished the R4/R9 lines of a 1 µsec frame 
(C4=R4/C9=R9)) 

2nd character C0=0 0 0 1 

C9=R9 and C4=R4. C4 is incremented (i.e. 1). We are on additional management. 
Note that C9 is not "really" reset to 0 because it is no longer managed. 

3rd character C0=0 (and next ones...) 0 0 1 

The CRTC is in additional management, but C9 is frozen. 

When R0 becomes > 2 again 0 0 1 

The additional management being in progress, it can no longer be cancelled on C0=2 
C9+1 will be compared to R5 on the next C0=0 

Next C0=0 after C0=R0>2 0 1 1 

C9+1 being different from R5, then C9 is incremented. 

Example 2  (movie sequel) 
We will put R0=0 on the first C0 after C0=R0>2 

Counters C0 C9 C4 

1st character C0=0 0 1 1 

Take values from the end of the first example 

2nd character C0=0 0 1 1 

C9 is frozen. Additional management is still ongoing. 
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13.2.7 CASE STUDY: VERTICAL RUPTURE LAST LINE (R.V.L.L.) 
 
A BIT OF TECHNICAL STORY... THE R.V.I. 
 

Initially developed on CRTC 0 using a knife and string, an ancient ancestral technique called 
"RVI" (Invisible Vertical Rupture © Overflow) is intended to allow the choice of the C9 
number of the visible line by creating small lines in the non-visible part of the screen (during 
HSYNC), while changing the address of the visible line. To achieve this, there are at least 3 
different methods, which can be combined: Either by modifying R9, or by changing the 
size of the lines (R0), or by limiting their number (synchronous action Z80A / CRTC). This 
allows you to individually control the address of many more rows than the 2k (among 16k of 
a page) allowed by the value C9=0  
 
One of the major constraints of this technique is the interdependence between the 
lines. Also, you will really enjoy the next Chapter.      
   
Indeed, the value of C9 calculated for the new row displayed depends on the value of C9 of 
the previous row. Creating an algorithm that automatically determines the desired evolutions 
of C9 according to the current C9 further alters the CPU available on a line of 64 μsec. 
 
It is in principle the value of R9 that sets the maximum value of C9. It should be heed that 
only the 3 bits of C9 are "preserved" for the composition of the address.  
 
One of the corollaries of this technique is usually the update of CRTC-VMA via an update of 
R12 and / or R13. For this, it is necessary that C9 and C4 return to 0.    
Note : For CRTC 2, it is also necessary for R12/R13 to be modified before C0=R1 and C0 
reaches R1 when C9=R9, but you are not on the right Chapter. 
 
For example, if C9=8 corresponds to C9=0 for address constitution, C4 does not return to 0 
and therefore R12/R13 cannot be considered. For a change of address to be considered, it is 
necessary that C9 "loops" and returns to 0, as well as C4. In addition, if the C9 
displayed is a "Last Line", it will cause C9 to be reset to 0. 
Note : For CRTC 1, there is no need for C4 to go back to 0 for the address to be taken into 
account. This is true whenever C0=0 while C4=0. 
    
When 2 μsec frame-lines are created in the edge of the screen (or not if we want to expose 
the underside of the case ...) while R9>0, then C9 will increment until it reaches R9.. 
        
But in this situation, when C9=R9 (so here C0=1, since R0=1), an additional "line" will be 
generated with C4=1 and C9=0. This "additional" management results in the creation of an 
additional "line" when C9 reaches R9. 
         
The change of address does not take place because C4=1. It is on the next line frame that 
C4 will return to 0 (with C9).  One consequence is that the number of C9 increments for 
these "2μ lines" is reduced by 1 compared to CRTC’s 1, 2, 3, 4.    
     
This does not allow access, with R0 = 1, to C9 = 7 or 5 by changing the offset, because it is 
necessary on the one hand that R9 is equal to 7 or 5, but also that it could have 
looped back to 0 before. 
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The final values of odd C9 do not help matters, unless you are a pro of the Interlace 
"controlled" (blah, blah, lawyer, blah, blah), but I digress... 
         
As this technique was developed on CRTC 0, the use of R0=0 was quickly abandoned 
because of the difficulty in understanding the behaviour of counters at the time.. 
 
On CRTC’s 1, 2, 3 and 4, this value (R0=0) is not a problem. Neither blocking C9 nor 
additional line C4=1, but it is more subtle for CRTC 2. It is therefore much simpler to create 
this type of rupture in the edge of the screen allowing access to all the values of C9 on the 
main line. The reset to 0 "triggered" on the "Last Line" is particularly interesting here 
compared to CRTC 1.  

 
At first glance, the notion of "Last Line" on CRTC 0 (and 2) seems restrictive, because it does not 
allow "immediate" consideration of updates to the R4 and R9 registers. 
 
In addition, CRTC 0 is limited to do rupture at least 2 μsec for "correct" operation of the C9 
counter. Finally, if a "last line" occurs when this line is 2 μsec, then a new line of 2 μsec is 
generated (C4=1). 
 
However, the principle of "Last Line" represents a great tool to program in advance a reset of  
C4 and C9, especially in the context of a vertical rupture, which I will call « Rupture Verticale 
Last Line » (in perfect Frenglish). 
 
Indeed, if we consider that each visible line is a "Last Line", then each first rupture of 2 μsec 
will be the first line of a frame with C4=C9=0.  
Thus, it is possible to anticipate the modification of R9 knowing that the next C9 will be equal to 
0. 
 
In this situation, the selection of the next C9 is greatly simplified since it is enough to set the 
desired number in R9 and create the appropriate number of ruptures (during HSYNC if the 
objective is to hide them) in order for C9 on the next line to be equal to that programmed in R9.  
 
The update of the offset (R12/R13) then takes place during the first rupture of 2 μsec. Since the 
last line (C9=R9) is always the visible line larger than 2 μsec, the CRTC does not generate an 
additional rupture of 2 μsec. 
 
This means that it takes 7 ruptures of 2 μsec to reach C9=7 (14 μsec in total). 
 
This also means, except to cheat in a barbaric way with the value of the offset, that the rupture of 
2 μsec begins essentially early in the 14 μsec in order to bring C9 to the desired value.  
 
For this purpose, the value of R0 must therefore correspond to the moment when the ruptures of 
2 μsec begin. Otherwise R0 must be equal to 63 – (R9 x 2) (for R9>1). 
 
In the diagram below the pink areas correspond to the OUT instructions on R0. R0-1 corresponds 
to the update of R0 at the beginning of the line (and therefore started at the end of the previous 
line), and R0-2 corresponds to the value of R0 for "hidden" ruptures. 
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Note : The 2nd OUT statement that begins on the 63rd character of the line is intended to resize 
the line for the next C9. This statement cannot start on the 64th character without causing C4 to 
overflow on the resized line (See Chapter 13.6.2). 
 
On a CTM monitor, the visible part of a line is 48 μsec, and 16 μsec is not visible. However, for the 
frame to be centered on screen, the HSYNC must start on the 51st character, when C0 reaches 50 
(if R0=63). And so that R2 is programmed with this value.  
 
To have the 14 μsec necessary to reach C9=7, R0 must be programmed with 49 and it would in 
principle be necessary that R2 is at 0 on this precise line (while inhibiting HSYNC by protecting the 
area with a value of R3 covering all other occurrences of C0=0). 
 
A HSYNC is not necessary on each line, but it is possible to position R2 with 50, knowing that the 
lines C9=7 benefit from the synchronization of the other lines, but this implies that there are not 
several consecutive C9=7 lines.  This is what is done in the R.V. demonstration provided with 
SHAKER, or lines 7 are out of sync. This is not a problem on native monitors. 
 
To be able to use all the ram without this constraint, simply set R2=49.  
If C9=7 is not used, it is possible to set R2=50. 

13.3  CRTC 1 
 
R0 accepts all values without causing any problem for other counters.  
  
If R0 is 0, then C9 and R4 continue to be managed normally.   
 
The offset can be modified according to the timings indicated in the diagrams of the following 
pages.  
 
Note 1: It is possible to create 14 "hidden" ruptures, allowing to simply access all the values of 
C9, especially since the offset is considered while C4 = 0 (and not when it goes back to 0). 
  
Note 2: The update of one of the offset registers taking at least 4 μsec, the only Z80A update 
instruction covers 4 "C0 line frames" when R0=0. 
 
Note 3: Using the OUTI instruction to modify R0 when C4=C9=0 has unintended consequences 
compared to the same change made with an OUT(C),R8. The modification of the R0 register is 
effective on the 5th μsecond of the OUTI statement, and on the 3rd μsecond of the OUT(C),R8 

R0-1 R0-2 R9 R2 OUT R0-2 OUT R0-1 New C9

63 x 0 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0

50 12 1 C0: … 47 48 49 50 0 1 2 3 4 5 6 7 8 9 10 11 12 1

59 1 2 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 1 0 1 2

57 1 3 C0: … 47 48 49 50 51 52 53 54 55 56 57 0 1 0 1 0 1 3

55 1 4 C0: … 47 48 49 50 51 52 53 54 55 0 1 0 1 0 1 0 1 4

53 1 5 C0: … 47 48 49 50 51 52 53 0 1 0 1 0 1 0 1 0 1 5

51 1 6 C0: … 47 48 49 50 51 0 1 0 1 0 1 0 1 0 1 0 1 6

49 1 7 C0: … 47 48 49 0 1 0 1 0 1 0 1 0 1 0 1 0 1 7

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R3=15
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instruction. As a result, the OUT(C),R8 instruction must begin 2 μsecond later than the OUTI 
instruction. But in this circumstance, HSYNC or BORDER are affected. This bug having been 
reproduced on 2 different machines with a native CRTC 1.  
 
I haven’t yet fully defined what happens in this situation (in the next version of the document), 
but it does not imply either the position of the HSYNC (R2), nor the size of the line (R1), and it 
only takes place when a new "frame" starts on C0=0 when C4=C9=0 (On C0>0 there is no 
noticeable problem). The value of R0, however, has an importance on the bug and depending on 
the machine, I noticed a deterioration of the situation over time on one of my CPC’s. 

13.3.1 CASE STUDY : VERTICAL INVISIBLE RUPTURE (R.V.I.) 
 
The R.V.I., on a CRTC 0, is very restrictive because placing R0 < 2 poses some constraints and 
limits the number of ruptures that can be made in the "invisible" part of the line.  Indeed, when 
R0 is 1, an additional line is generated, and when R0 is 0, C9 is affected. This technique implies 
that C9 goes back to 0 so that R12 and / or R13 are considered, and this imperatively requires a 
high number of ruptures.  It is impossible on CRTC 2, in particular because of the constraints of 
considering R12/R13. 
 
When it comes to writing a program running on the CRTC’s other than CRTC 0, the R0=0 value is 
not a particular problem. If the objective remains to access all C9, we will nevertheless prefer the 
R.V.L.L. on CRTC 0 and 2 which avoid a transitional management algorithm between the C9. 
CRTC’s 1, 3 and 4 do not have this option. 
 
CRTC 1, compared to CRTC 3 and 4 (and although CRTC 3 has many other ways to change the 
offset of each line) has an additional advantage to manage a R.V.I (if I have not already written 
it). Indeed, the offset is considered as long as C4=0, whatever the value of C9, unlike all other 
CRTC’s. (See Chapter 20.3). 
 
This allows the modification of the offset without C9 having "looped" to 0 and allows to limit the 
number of ruptures necessary to reach the desired C9 with a "new" offset, which allows for the 
placement of R2 at 50 for perfect screen centering. 
 
The following tables describe the 64 transitional states between two C9. The method used 
involves updating R0 one or two times per line, as well as updating R9, R12 and/or R13.  
A joy for all SudokuZ80A fans! 
 
The values of the new C9s (shown in red) correspond to a CRTC 1 "C4=0" possibility. For CRTC 3 
and 4, simply replace the values with those listed below each table. It should be noted that the 
passage C9=0 to 7 implies that R0 of the main line is equal to 49, limiting de facto the possibility 
of setting R2 to 50. This is not at all inconvenient for a CRTC 4, since it is the value that allows 
centering on this circuit. (See Chapter 15) 
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C9=0

Old C9 R0.1 R0.2 R9 R2 OUT R0.2 OUT R0.1 New C9

0 63 0 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0

0 63 1 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 1

0 59 0 2 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 2

0 57 0 3 C0: … 47 48 49 50 51 52 53 54 55 56 57 0 0 0 0 0 0 3

0 55 0 4 C0: … 47 48 49 50 51 52 53 54 55 0 0 0 0 0 0 0 0 4

0 59 0 5 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 5

0 58 0 6 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 0 0 0 0 0 6

0 57 0 7 C0: … 47 48 49 50 51 52 53 54 55 56 57 0 0 0 0 0 0 7

C3: 0 1 2 3 4 5 6

Compatibility CRTC 3 & 4 R3

Old C9 R0.1 R0.2 R9 R2 New C9

0 59 0 1 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 1

0 53 0 5 C0: … 47 48 49 50 51 52 53 0 0 0 0 0 0 0 0 0 0 5

0 51 0 6 C0: … 47 48 49 50 51 0 0 0 0 0 0 0 0 0 0 0 0 6

0 49 0 7 C0: … 47 48 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

C9=1

Old C9 R0.1 R0.2 R9 R2 OUT R0.2 OUT R0.1 New C9

1 63 1 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0

1 59 0 4 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 1

1 63 2 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 2

1 58 0 3 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 0 0 0 0 0 3

1 56 0 4 C0: … 47 48 49 50 51 52 53 54 55 56 0 0 0 0 0 0 0 4

1 54 0 5 C0: … 47 48 49 50 51 52 53 54 0 0 0 0 0 0 0 0 0 5

1 59 0 6 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 6

1 58 0 7 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 0 0 0 0 0 7

C3: 0 1 2 3 4 5 6

Compatibility CRTC 3 & 4 R3

Old C9 R0.1 R0.2 R9 R2 New C9

1 59 0 3 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 2

1 52 0 6 C0: … 47 48 49 50 51 52 0 0 0 0 0 0 0 0 0 0 0 6

1 49 0 7 C0: … 47 48 49 50 0 0 0 0 0 0 0 0 0 0 0 0 0 7
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C9=2

Old C9 R0.1 R0.2 R9 R2 OUT R0.2 OUT R0.1 New C9

2 63 2 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0

2 59 0 2 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 1

2 58 0 2 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 0 0 0 0 0 2

2 63 3 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 3

2 57 0 4 C0: … 47 48 49 50 51 52 53 54 55 56 57 0 0 0 0 0 0 4

2 55 0 5 C0: … 47 48 49 50 51 52 53 54 55 0 0 0 0 0 0 0 0 5

2 53 0 6 C0: … 47 48 49 50 51 52 53 0 0 0 0 0 0 0 0 0 0 6

2 59 0 7 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 7

C3: 0 1 2 3 4 5 6

Compatibility CRTC 3 & 4 R3

Old C9 R0.1 R0.2 R9 R2 New C9

2 59 0 3 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 3

2 51 0 7 C0: … 47 48 49 50 51 0 0 0 0 0 0 0 0 0 0 0 0 7

C9=3

Old C9 R0.1 R0.2 R9 R2 OUT R0.2 OUT R0.1 New C9

3 63 3 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0

3 58 0 3 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 0 0 0 0 0 1

3 57 0 3 C0: … 47 48 49 50 51 52 53 54 55 56 57 0 0 0 0 0 0 2

3 56 0 3 C0: … 47 48 49 50 51 52 53 54 55 56 0 0 0 0 0 0 0 3

3 63 4 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 4

3 56 0 5 C0: … 47 48 49 50 51 52 53 54 55 56 0 0 0 0 0 0 0 5

3 54 0 6 C0: … 47 48 49 50 51 52 53 54 0 0 0 0 0 0 0 0 0 6

3 52 0 7 C0: … 47 48 49 50 51 52 0 0 0 0 0 0 0 0 0 0 0 7

C3: 0 1 2 3 4 5 6

Compatibility CRTC 3 & 4 R3

Old C9 R0.1 R0.2 R9 R2 New C9

3 58 0 4 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 0 0 0 0 0 4

C9=4

Old C9 R0.1 R0.2 R9 R2 OUT R0.2 OUT R0.1 New C9

4 63 4 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0

4 57 0 4 C0: … 47 48 49 50 51 52 53 54 55 56 57 0 0 0 0 0 0 1

4 56 0 4 C0: … 47 48 49 50 51 52 53 54 55 56 0 0 0 0 0 0 0 2

4 55 0 4 C0: … 47 48 49 50 51 52 53 54 55 0 0 0 0 0 0 0 0 3

4 59 0 4 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 4

4 63 5 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 5

4 55 0 6 C0: … 47 48 49 50 51 52 53 54 55 0 0 0 0 0 0 0 0 6

4 53 0 7 C0: … 47 48 49 50 51 52 53 0 0 0 0 0 0 0 0 0 0 7

C3: 0 1 2 3 4 5 6

Compatibility CRTC 3 & 4 R3

Old C9 R0.1 R0.2 R9 R2 New C9

4 57 0 5 C0: … 47 48 49 50 51 52 53 54 55 56 57 0 0 0 0 0 0 5
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C9=5

Old C9 R0.1 R0.2 R9 R2 OUT R0.2 OUT R0.1 New C9

5 63 5 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0

5 59 0 8 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 1

5 59 0 7 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 2

5 59 0 6 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 3

5 59 0 5 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 4

5 58 0 5 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 0 0 0 0 0 5

5 63 6 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 6

5 54 0 7 C0: … 47 48 49 50 51 52 53 54 0 0 0 0 0 0 0 0 0 7

C3: 0 1 2 3 4 5 6

Compatibility CRTC 3 & 4 R3

Old C9 R0.1 R0.2 R9 R2 New C9

5 56 0 6 C0: … 47 48 49 50 51 52 53 54 55 56 0 0 0 0 0 0 0 6

C9=6

Old C9 R0.1 R0.2 R9 R2 OUT R0.2 OUT R0.1 New C9

6 63 6 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0

6 59 0 9 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 1

6 59 0 8 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 2

6 59 0 7 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 3

6 59 0 6 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 4

6 58 0 6 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 0 0 0 0 0 5

6 57 0 6 C0: … 47 48 49 50 51 52 53 54 55 56 57 0 0 0 0 0 0 6

6 63 7 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 7

C3: 0 1 2 3 4 5 6

Compatibility CRTC 3 & 4 R3

Old C9 R0.1 R0.2 R9 R2 New C9

6 55 0 7 C0: … 47 48 49 50 51 52 53 54 55 0 0 0 0 0 0 0 0 7

C9=7

Old C9 R0.1 R0.2 R9 R2 OUT R0.2 OUT R0.1 New C9

7 63 7 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0

7 59 0 10 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 1

7 59 0 9 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 2

7 59 0 8 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 3

7 59 0 7 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 0 0 0 0 4

7 58 0 7 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 0 0 0 0 0 5

7 57 0 7 C0: … 47 48 49 50 51 52 53 54 55 56 57 0 0 0 0 0 0 6

7 56 0 7 C0: … 47 48 49 50 51 52 53 54 55 56 0 0 0 0 0 0 0 7

C3: 0 1 2 3 4 5 6

R3
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13.4  CRTC 2 
 
R0 accepts all values without causing any problem for other counters. 
 
However, one of the peculiarities of this CRTC is to inhibit many treatments during HSYNC. See 
Chapters 15.6 (page 145) and 14 (page 120). 
  
In particular : 

 A GHOST VSYNC is generated when C4=R7 if this happens during the HSYNC. 
See Chapter 16.4.3 (page 159). 

 C4's reset management (when on the last line of a frame) is disabled under certain 
conditions. See Chapters 12 (page 88) and 10 (page 71). 

 The border deactivation condition (when C0=0) is also no longer supported, and the 
BORDER from the previous row remains active. See Chapter 15.5.2, page 145. 
 

This CRTC displays 1 byte (0.5μsec) of BORDER before C0=0, but unlike CRTC 0, which does the 
same thing, the R8 SKEW DISP function does not exist to work around this problem. So, we 
cannot (to my knowledge) prevent the appearance of 1 byte of BORDER.  
See Chapter 19, page 181.  
  
R12/R13 content is "transferred" to CRTC-VMA' when C0 reaches R1.  
Then CRTC-VMA' is transferred to CRTC-VMA at the beginning of the frame. 
This implies that it is impossible to change offset if C0 does not reach R1.  
See Chapter 17.4.3, page 173. 
 
Changing the offset therefore implies that at least one microsecond of BORDER exists 
before C0=R0, so that C0 can be equal to R1. 
 
The treatment of C4 and C9 on this CRTC partly follows the logic of CRTC 0, insofar as there is a 
notion of arming the reset to 0 or the increment of C4 on the condition of "Last Line". 
 
The CRTC determines if it is on a “Last Line” on position C0=0 or via an update of R4 and/or R9 
outside HSYNC and under conditions (See chapter 12.4.1). 
Depending on the "Last Line" state, it arms the reset of C9 (and C4) to 0 for the next line, 
regardless of the values that are programmed afterwards in R9 and R4 during the line. 
This concept is of paramount importance to enable the management of an RVLL on this CRTC. 
 
When it is necessary to create the conditions allowing an offset change at each "line", C4, R4, C9, 
R9 must all be at 0 when C0=0, and C0 must have met R1 after R12 and/or R13 are updated.  
 
Without a clever trick, C4 will overflow on the second line.  
See Chapter 10.3.3, page 74. 
  
If R0 is positioned at 3, for example, CRTC 2 will generate 16 "lines" of 4 μsec.  
In this situation, care must be taken to ensure that R2 is greater than 0: 

 So that HSYNC must start when C0>0 in for VSYNC to be considered when C4 reaches 
R7. However, this can be "bypassed". 

 So that the BORDER is disabled (or at least does not remain enabled) when C0=0, 
which is a more annoying constraint. 
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13.4.1 CASE STUDY: VERTICAL RUPTURE LAST LINE (R.V.L.L.) 
 
CRTC 2 collects an anthology of various constraints that must be considered if we want to achieve 
a vertical rupture... 
  
Let's say it right away, performing a "traditional" RVI on this CRTC is impossible for a simple 
reason: For the offset update, C0 must reach R1 on the last line. Modifying R12/R13 after 
C0>R1 does not allow consideration for the next line. However, the RVI is based on the 
principle of reaching the last line in the invisible part of the screen, and it would therefore be 
necessary that a micro-line "in the edge" has a C0 that reaches R1 (when C9 = R9). 
 
Setting R1=1 when R0=1 will activate the BORDER from C0=1. 
Unless you can modify R0 and R1 at the same time, not much more will be displayed.... 
 
It is therefore necessary that C0 can reach R1 on the visible line, which must also be the last of 
the frame. This is good because RVLL works on this principle! 
 
CRTC 2 doesn’t have any problem for the counting of C9 and C4 when R0=0.  As such, it has the 
same potential for "hidden" ruptures as a CRTC 1, i.e. 14 ruptures of 1 μsec, which should have 
made it possible to solve the problem of centering encountered on CRTC 0, whose potential for 
hidden rupture is 7. 
But, unfortunately, this is only possible if you can activate the last line state on a first line   
 

 
Like CRTC 0, there is a notion of "Last Line" to schedule an automatic reset to 0 of C9 and C4. 
However, activating this state on a first line is possible only if this same state is false on the last 
position C0 of the HSYNC. 
 
In other words, two first lines C9=C4=0 are impossible without modifying R9 and/or R4 during the 
HSYNC to allow the “Last Line” state to be considered, otherwise C4 overflows dirty. 
 
It is impossible to modify R9 during HSYNC to allow this state to be considered and to allow this 
reset of C9 to 0 (as it can be done in a line-to-line rupture) because if you want to modify R9 
during HSYNC, there is no magic trick to modify R0 in parallel to create hidden ruptures. 
 
However, it is very useful to remember here that R9 is a 5-bit register of which only 3 bits 
participate to the video pointer. When line C9=8 is displayed, line C9=0 is displayed. 
 
 

R0-1 R0-2 R9 R2 OUT R0-2 OUT R0-1 New C9

63 0 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0

58 4 1 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 0 1 2 3 4 1

57 2 2 C0: … 47 48 49 50 51 52 53 54 55 56 57 0 1 2 0 1 2 2

57 1 3 C0: … 47 48 49 50 51 52 53 54 55 56 57 0 1 0 1 0 1 3

55 1 4 C0: … 47 48 49 50 51 52 53 54 55 0 1 0 1 0 1 0 1 4

58 0 5 C0: … 47 48 49 50 51 52 53 54 55 56 57 58 0 0 0 0 0 5

57 0 6 C0: … 47 48 49 50 51 52 53 54 55 56 57 0 0 0 0 0 0 6

56 0 7 C0: … 47 48 49 50 51 52 53 54 55 56 0 0 0 0 0 0 0 7

C3: 0 1 2 3 4 5 6

R3
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It is therefore possible to manage the contiguity constraints of the C9 using this principle, as can 
be seen in the following table:  
  

 
The demonstration provided with SHAKER uses a frame without identical contiguous C9 using all 8 
blocks. However, the first and last lines use the "C9 and 7" principle in order to avoid this 
contiguity (by creating a line 0 via C9=8 and a line 1 via C9=9). 
 
It should be noted, however, that to reach C9=6 and C9=7 (via C9=14 and 15), it is necessary for 
R0 to reach 49 and 48 respectively. This is not an ideal situation if the visible lines need to be 
centered. 
 
The earlier C0=R2 occurs, the more "hidden ruptures" appear on the left side of the screen. 
 
If you’re curious you can watch the intro of "AMAZING DEMO 2021". A simple method to 
bypass the constraint of contiguous rows is to alternate 1 row out of 2 the table management of 
C9 to reach. Thus, a line 1 is then necessarily followed by a line C9 + 8 and the problem is solved. 
 
Notes : Since CRTC 0 cannot create hidden ruptures of 1 μsec, this means that the first data to 
appear on the left is the 3rd byte of the line, followed by a 1/2 μsec of BORDER. On a CRTC 2, it 
would be the 1st byte of the line (when R0=0) followed by a 1/2 μsec of BORDER. Finally, on 
CRTC’s 1, 3 and 4 in the same R2 context, it would be 2 bytes which would appear on the left.  

13.5  CRTC 3, 4 
R0 accepts all values without causing any problems for other counters.  
  
If R0 is 0, then C9 and R4 continue to be managed normally.   
 
The offset can be modified according to the timings indicated in the diagrams of the following 
pages, Chapter 13.7. 
 
The techniques of R.V.L.L. are inapplicable on these CRTC’s. The main "subtlety" of these CRTC’s 
being the change from C9 to 0 if R9 is programmed with a value lower than the current C9 (which 
allows a "certain" compatibility with CRTC 0). It is possible to carry out an R.V.I. with the 
constraint of a loop from C9 to 0 so that the offset is considered. (See Chapter 13.3.1). Be careful, 
however, not to forget that the I/O takes place with 1 μs delay, which implies placing the OUT 1 
μsec before those that would be done on a CRTC 1.  

R0-1 R0-2 R9 R2 OUT R0-2 OUT R0-1 New C9

55 0 8 C0: … 47 48 49 50 51 52 53 54 55 0 0 0 0 0 0 0 0 8 (0)

54 0 9 C0: … 47 48 49 50 51 52 53 54 0 0 0 0 0 0 0 0 0 9 (1)

53 0 10 C0: … 47 48 49 50 51 52 53 0 0 0 0 0 0 0 0 0 0 10 (2)

52 0 11 C0: … 47 48 49 50 51 52 0 0 0 0 0 0 0 0 0 0 0 11 (3)

51 0 12 C0: … 47 48 49 50 51 0 0 0 0 0 0 0 0 0 0 0 0 12 (4)

50 0 13 C0: … 47 48 49 50 0 0 0 0 0 0 0 0 0 0 0 0 0 13 (5)

49 0 14 C0: … 47 48 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 (6)

48 0 15 C0: … 47 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 (7)

C3: 0 1 2 3 4 5 6

R3
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13.6 R0 UPDATE 

13.6.1 DELAYS 
CRTC 0, 1, 2 

Previous R0=#3f

C0vs 3b 3c 3d 3e 3f 40 41 42 Update of R0 not considered (too late)

OUT R0, 7F Update of R0 ok (just in time)

C0vs 3b 3c 3d 3e 3f 40 41 42

OUT R0, 7F

C0vs 3b 3c 3d 3e 3f 40 41 42

OUT R0, 7F

C0vs 3b 3c 3d 3e 3f 00 01 02

OUT R0, 7F Update of R0 not considered (too late)

Previous R0=0

C0vs 0 0 0 1 2 3 4 5

OUT R0, 10

C0vs 0 0 0 0 1 2 3 4

OUT R0, 10

 
CRTC 3, 4 

Previous R0=#3f

C0vs 3b 3c 3d 3e 3f 40 41 42 Update of R0 not considered (too late)

OUT R0, 7F Update of R0 ok (just in time)

C0vs 3b 3c 3d 3e 3f 40 41 42

OUT R0, 7F

C0vs 3b 3c 3d 3e 3f 00 01 02

OUT R0, 7F Update of R0 not considered (too late)

C0vs 3b 3c 3d 3e 3f 00 01 02

OUT R0, 7F Update of R0 not considered (too late)

Previous R0=0

C0vs 0 0 0 0 1 2 3 4

OUT R0, 10

C0vs 0 0 0 0 0 1 2 3

OUT R0, 10

 

  



V1.5 – 03.2023 – Page 114 / 281 
 

The update of the R0 register is considered immediately by the CRTC for the counting of C0. The 
C0 counter never exceeds the value of R0 when R0 is updated according to the timing described 
in the previous diagrams. 
That is, if R0=0 and C0 is 0, it will not overflow, and C0 will always be 0. 
 
In general, the value programmed in R0 is 63 so that 64 μsec flows before the counter goes back 
to 0. This loopback allows the C0 counter to return to the value of R2 in a period of 64 μsec. 
 
When R0 is reprogrammed during the line, it is necessary to plan to reprogram R2 so that the 
HSYNC takes place in the same place every 64 μsec and that there is only one of more than 2 
μsec. 
 
In principle, it is rather advisable to generate 1 HSYNC per line, but a CTM monitor will support 
not having 1 per line (blah, blah, heretics, blah, blah..., purists, blah, blah,...). 
 
As previously stated, on CRTC 0, updating R0 with a value of less than 2 prevents the CRTC from 
carrying out certain specific treatments that have consequences on counting. 
 
The minimum possible time between R13 and R12 (in this order) is 8 μsec. 
See Chapter 23.1, page 240. 
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13.6.2 EXCEPTIONS 
There are certainly other exceptions that still remain to be established in a nice table but here are 
nevertheless some cases identified, according to the CRTC.  
 
CRTC 1 
There is a difference in CRTC 1's consideration of the update of R0 on a specific position of C0 
according to Z80A instruction used for this update. The two instructions concerned are OUTI (I/O 
on the 5th μsec) and OUT(C),reg8 (I/O on the 3rd μsec). This reflects a difference in internal 
processing time at the level of the Z80A instructions. 
 
This is the case when updating R0 to the position C0=0 when C4=C9=0. An RVI with ruptures of 
1 NOP on this CRTC cannot use OUTI. See Chapter 13.3, page 105. I haven’t (yet) identified 
exactly what is happening, but it seems to have an action on disabling the BORDER, and not on 
counting C0, having not noticed any desynchronization in this situation. 
 
CRTC 0 
When C0=R0, the CRTC will increment C4 if a reset to 0 has not been scheduled. 
This reset of C4 is fully effective from C0=2 when the CRTC has assessed that it is on a last frame 
line (C4=C4 and C9=R9) and that there is no additional management (C9=R5, R8=1 or 3 and 
interlace line condition is ok, on the first frame where the register is updated on even C9). 
 
Note that if an additional management is in progress, the reset to 0 is programmed and will 
normally occur at the end of this management. 
 
To fully understand what I am going to describe, we must keep in mind that when the condition 
C0=R0 occurs after C0=2 as part of additional management, then C4 is incremented 
regardless of the value of R4, and C9 goes to 0 when C0 returns to 0. CRTC 0 saves C5 and uses 
C9 during additional management. 
 
If R0 is programmed with a value of 1, then the additional management test is not performed, 
and the increment of C4 remains programmed when C9=R9. As part of the R0 update times, this 
management can be partially accomplished if the update takes place on C0 =1 while R0 = 1 
and we want to modify it with a value greater than 1 (for example to pass a line to 64 μsec ...). 
 
If the update of R0 takes place when C0=1 and C9=R9, this causes an overflow of C4 without 
C0 and C9 being reset to 0, even if C4 is not equal to R4. 
We are in additional line management when: 

 C4 is unconditionally incremented. 
 C9 can no longer go back to 0, even when C9=R9. 

 
The C0=R0 test (with a value of 1) takes place before the register is updated, causing "additional 
management to begin". But the R0 register was however updated early enough to be taken into 
account for the increment of C0 as indicated in the previous Chapter (See Chapter 13.6.1) : 
 

Screen Grid: 56 57 58 59 60 61 62 63 0 1 2 3 4 5 6 7

C0: … 56 57 58 59 0 1 0 1 0 1 2 3 4 5 6 7

R9=7 C9: … 4 4 4 4 5 5 6 6 7 7 7 7 7 7 7 7

R4>=6 C4: … 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7

OUT R0,1 OUT R0,63  
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In this example, two situations are possible on the line C9=7 when R9=7 and when C0 reaches R0 
(which is then 63 thanks to the second OUT). 

13.6.2.1 We are not on a "last line of frame" (C4<>R4,  C9=R9) 
Additional management is automatically disabled on the C0=2 position (C4<>R4) because R5 is 0. 
The consequence is then just an overflow of C4 from C0 = 2, without C4 going back to 0 then as 
it would have done in additional management.  
Note that this overflow would not have occurred if C9 had been different from R9.  
In the example, C4 would have remained equal to 6.  
C9/C4 counting control remains classic. 
If, for example, it was necessary to compensate the two "lines" of 2 μsec created after C0=59 so 
that 8 complete lines would be displayed, it would be necessary to program R9 with 9 to add 2 
new lines of 64 μsec. 

13.6.2.2 We are on a "last line of frame" (C4=R4, C9=R9) 
The last line status has been enabled with C4=R4, C9=R9, regardless of the value of R4. 
This is also true if R4=0. 
As in the previous case, C4 is incremented from C0=2.  
Additional management is evaluated on the C0=2 position. 
In this position, incrementing C4 without C9 returning to 0 leaves the additional management 
activated. 
If, for example, it was necessary to compensate the two "lines" of 2 μsec created after C0=59 so 
that 8 complete lines were displayed, it would be necessary to program R5 with 10 to add 2 
new lines of 64 μsec. If R5 is not reprogrammed and was 0, C9 will increment to display lines 8 to 
31, until it reaches R5. When the additional management is complete, then C4 returns to 0.  
 
If we want to avoid that C4 is incremented during an "enlargement" of R0 which was 1, it is 
therefore imperative to do it on the position C0 = 0. 

13.7  OFFSET ACCORDING TO C0 
The following diagrams describe how to consider a change in offset (R12 and/or R13) from the 
current value of C0vs. CRTC 2 is not represented here as these tests were initially performed with 
an R1 value greater than R0. 
 
Offset updates are represented with the colour green.. 
Initial data : 
CRTC-R4=0 
CRTC-R9=0 
CRTC-R1=4 
CRTC-R13=0 
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13.7.1 4 µsec FRAMES (R0=3) 
 

CRTC 0, 1
R0

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C0 from VSYNC 25 26 27 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1

C0 from GA 24 25 26 27 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0

OUT R0 , 3 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4

OUT R0 , 3 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4

OUT R0 , 3 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4

CRTC 3,4
R0

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C0 from VSYNC 25 26 27 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1

C0 from GA 24 25 26 27 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0

OUT R0 , 3 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4

OUT R0 , 3 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4

OUT R0 , 3 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 4
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13.7.2 2 µsec FRAMES (R0=1) 
 

CRTC 0
R0

C4 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

C0 from VSYNC 25 26 27 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

C0 from GA 24 25 26 27 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

OUT R0 , 1 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 0 1 0 1 0 1 0 1 0 1 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4

OUT R0 , 1 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 0 1 0 1 0 1 0 1 0 1 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4

OUT R0 , 1 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4

The event C0 = R0 after 2 µsec leaves C4 = 1 for the 2nd period of 2 µsec, which represents a vertical adjustment "not canceled" (because C0 is never equal to 2)

CRTC 1  

R0

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C0 from VSYNC 25 26 27 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

C0 from GA 24 25 26 27 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

OUT R0 , 1 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 0 1 0 1 0 1 0 1 0 1 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4

OUT R0 , 1 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 0 1 0 1 0 1 0 1 0 1 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4

OUT R0 , 1 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 0 1 0 1 0 1 0 1 0 1 0 1 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4

CRTC 3, 4
R0

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C0 from VSYNC 25 26 27 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

C0 from GA 24 25 26 27 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

OUT R0 , 1 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 0 1 0 1 0 1 0 1 0 1 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4

OUT R0 , 1 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 0 1 0 1 0 1 0 1 0 1 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4

OUT R0 , 1 OUT R13 , 4

C0 from GA/VRAM x x x x 0 1 0 1 0 1 0 1 0 1 0 1 0 1 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4  
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13.7.3 1 µsec FRAMES (R0=0) 
 

CRTC 0
R0

C4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C0 from VSYNC 25 26 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C0 from GA 23 24 25 26 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OUT R0 , 0 OUT R0 , 30

C0 from GA/VRAM x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R12 / R13 cannot be considered until C4 and C9 both go back to 0

CRTC 1
R0

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C0 from VSYNC 25 26 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C0 from GA 24 25 26 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OUT R0 , 0 OUT R13 , 4

C0 from GA/VRAM x x x x 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

OUT R0 , 0 OUT R13 , 4

C0 from GA/VRAM x x x x 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

OUT R0 , 0 OUT R13 , 4

C0 from GA/VRAM x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

CRTC 3,4
R0

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C0 from VSYNC 25 26 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C0 from GA 24 25 26 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OUT R0 , 0 OUT R13 , 4

C0 from GA/VRAM x x x x 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

OUT R0 , 0 OUT R13 , 4

C0 from GA/VRAM x x x x 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

OUT R0 , 0 OUT R13 , 4

C0 from GA/VRAM x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
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14 SYNCHRONISATION : REGISTER R3 

14.1 GENERAL 
Register 3 may contain 2 different pieces of information, depending on the CRTC 6845 model. 
 
In general, it allows to fix: 

 The duration of HSYNC (in R3l).  
 The duration of VSYNC for some CRTC’s (in R3h). 

 
In the various diagrams, the HSYNC period is represented using a counter C3l which starts at 0 
on C0=R2 and which counts until it reaches the value of R3l. R3L contains a number of µSeconds. 
The HSYNC starts as soon as the C3L counter reaches the value of R3L, at the start of the 
character. 
 

 
 

 
 

 
 

 

  

CRTC 7 6 5 4 3 2 1 0

0 Vsync Vsync Vsync Vsync Hsync Hsync Hsync Hsync

1 x x x x Hsync Hsync Hsync Hsync

2 x x x x Hsync Hsync Hsync Hsync

3 Vsync Vsync Vsync Vsync Hsync Hsync Hsync Hsync

4 Vsync Vsync Vsync Vsync Hsync Hsync Hsync Hsync

Other CRTC 7 6 5 4 3 2 1 0

MC6845*1 Vsync Vsync Vsync Vsync Hsync Hsync Hsync Hsync

UM6845E Vsync Vsync Vsync Vsync Hsync Hsync Hsync Hsync

Hsync CRTC Hsync CRTC Vsync CRTC

0 0 0 0 No Hsync 0 0 0 0 16 nop 0 0 0 0 16 lines

0 0 0 1 1 nop 0 0 0 1 1 nop 0 0 0 1 1 line

0 0 1 0 2 nop 0 0 1 0 2 nop 0 0 1 0 2 lines

0 0 1 1 3 nop 0 0 1 1 3 nop 0 0 1 1 3 lines

0 1 0 0 4  nop 0 1 0 0 4  nop 0 1 0 0 4 lines

0 1 0 1 5 nop 0 1 0 1 5 nop 0 1 0 1 5 lines

0 1 1 0 6 nop 0 1 1 0 6 nop 0 1 1 0 6 lines

0 1 1 1 7 nop 0 1 1 1 7 nop 0 1 1 1 7 lines

1 0 0 0 8 nop 1 0 0 0 8 nop 1 0 0 0 8 lines

1 0 0 1 9 nop 1 0 0 1 9 nop 1 0 0 1 9 lines

1 0 1 0 10 nop 1 0 1 0 10 nop 1 0 1 0 10 lines

1 0 1 1 11 nop 1 0 1 1 11 nop 1 0 1 1 11 lines

1 1 0 0 12 nop 1 1 0 0 12 nop 1 1 0 0 12 lines

1 1 0 1 13 nop 1 1 0 1 13 nop 1 1 0 1 13 lines

1 1 1 0 14 nop 1 1 1 0 14 nop 1 1 1 0 14 lines

1 1 1 1 15 nop 1 1 1 1 15 nop 1 1 1 1 15 lines
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14.2 VSYNC LENGTH 
 
First-generation CRTC’s generate a 16-line VSYNC signal. 
 
The manufacturers have improved the circuit by adding a function to parameterize the number of 
lines, using the high-4 bits of R3 (R3h). 
 
In order to ensure compatibility of programs created for the first generation of circuits, the value 0 
for the CRTC’s integrating the new function corresponds to 16 lines of VSYNC. 
  
The high-4 bits of R3h is used to indicate an exact number of lines, except for 0 therefore, which 
means 16 lines. 
 
The BASIC ROM of CPC initializes R3h with 8 (R3=1000xxxx). 
 
Thus, CRTC’s 1 and 2, which do not manage these bits, generate 16 lines of VSYNC while CRTC’s 
0, 3 and 4 generate 8. (When R7 is already programmed before C4=R7). 
 
When a VSYNC starts on CRTC 0, 3 and 4, it is possible to modify the number of lines along the 
way. 
 
Thus, if R3H was worth 9 and R3h is modified with the value 8 on the 8th line of the VSYNC, then 
the VSYNC stops at the end of the HSYNC of this line. 
 
On the other hand, if R3h is modified with the value 8 on the 9th line, then the VSYNC line 
counter will count until its definition limit (4 bits) by creating 16 lines, then will generate 8 
additional lines again. 
 
Since CRTC’s 1 and 2 do not know how to manage a VSYNC with a configurable number of lines, 
it is advisable to avoid using this function on CRTC’s 0, 3 and 4. This can lead to 
incompatibilities for a program that would have the good idea to synchronize on the end of the 
VSYNC for example, or to test the VSYNC in a period greater than that defined in R3h and less 
than 16. 
 
This involves systematically reprogramming this register because initialization by the ROM creates 
a difference which could be avoided. 
 
The game "3D STARSTRIKE", published by “Realtime Games Software” in 1985, was developed 
on CRTC 0. The developers did not modify the programmed value in ROM for the length of the 
VSYNC. This causes a bug during the game on CRTC 1 and 2, because the firing cursor is not in 
phase with the display and flashes, while this is not the case on CRTC 0, 3 and 4. 
 
Note : 
When the VSYNC signal is generated, the Gate Array will take care of the management of the 
VSYNC (26 black lines including 4 monitor signal lines). The programmed length in R3h has no 
real use for synchronization. Thus program a VSYNC CRTC of 1 line (R3h=1) on CRTC 0 has no 
impact on image synchronization. This is not the case, however, for CRTC 3 and 4, which need 
the CRTC VSYNC signal to be active on the 2nd HSYNC encountered since C4==R7 so that the C-
VSYNC Monitor is generated by the ASIC or the Pre-Asic (see chapter 16.2). 
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14.3 HSYNC GATE ARRAY VERSUS CRTC 
 
When the GATE ARRAY receives a HSYNC signal from the CRTC, it displays black color for 2 µsec 
(approximately because it is possible to reduce this period) and then generates a C-HSYNC signal 
for the monitor whose maximum duration is 4 µsec (during this period he stops displaying colors). 
If the value programmed in R3 is greater than 6, the GATE ARRAY will display black color again 
for the remaining period. 
 
The GATE ARRAY partly uses the VSYNC and HSYNC signals produced by the CRTC. Even if the 
role of the HSYNC signal is more important than that of the VSYNC signal, the GATE ARRAY 
remains (almost) master of the beginning and the end of the C-HSYNC signal. The VSYNC signal is 
only used to start the VSYNC management of the GATE ARRAY (CRTC 0, 1 and 2), which will then 
deal with the start and duration of the C-VSYNC signal using the HSYNC signal. 
 
If the HSYNC CRTC time is greater than 6, it does not affect the horizontal synchronization of the 
monitor. With a value less than 6, the C-HSYNC signal time for the monitor drops below 4 µsec. In 
this situation, the C-HSYNC signal is no longer stopped at the end of a 4 µsec count (64 x 
0.0625µsec) by the GATE ARRAY, but by receiving the HSYNC end signal of the CRTC. The signal 
is therefore not reduced by 1, 2 or 3 µsec exactly. 
 
However, it can be useful to have a "CRTC" HSYNC time greater than 6 because the CRTC does 
not consider the update of all its registers in the same way during this period and therefore makes 
it possible to inhibit processing. In addition, the C-VSYNC signal is produced by the GATE ARRAY 
only when the CRTC signals an end of HSYNC. 

14.4 HSYNC AND FRAME POSITION 
 
It is possible to use the C-HSYNC produced by the GATE ARRAY to shift the lines more finely. By 
reducing the size of 1 µsec, the line is "shifted" with a offset of 0.5 µsec on the right (1/2 CRTC 
character). The monitor deflectors and the GA signals are in principle fairly precise (see chapter 
16.6). 
 
The start of the HSYNC CRTC signal reported to the GATE ARRAY will determine the start of the 
C-HSYNC signal. The C-HSYNC signal begins one or two pixels-M2 before the start of the 3rd µsec 
(according to the CRTC) and stop under 2 conditions. Either the CRTC signals an end of HSYNC, 
or the GATE ARRAY has totaled very exactly 4 µsec. 
 
When R3l>=6, it is the accounting by the GA of the 4 µs which conditions the end of C-HSYNC 
signal because the end of HSYNC-CRTC occurs one or two pixels-M2 after these 4 µsec. 
 
On the other hand, if R3l is less than 6, then it is the end of HSYNC produced by the CRTC which 
interrupts C-HSYNC. The duration of the C-HSYNC then consider the deadline where the CRTC 
signals the end of HSYNC to the GATE ARRAY. And this situation is less precise according to the 
CRTC. 
 
Some games and demos used R3l values 5 and 6 to shift the screen by 8 Pixels (mode 2) to 
manage a horizontal scroll. This is particularly the case on the game "Skatewars", edited by “Ubi 
Soft” in 1989. Jon Menzies uses values &85 and &8E, which goes to values 5 and 6 for the size of 
the C-HSYNC generated by the GATE ARRAY. In some parts of "Yao Demo", created in 1990, 
Fabien Fessard also uses values 5 and 6 to slow down his scrollings. 
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When R3l drops, excluding R3.JIT, the image is shifted to the right of half a unit (0.5 µsec if 
R3l drops by 1) whatever the value of R2. However, values 5 and 6 should be avoided to 
obtain an exact and independent phase shift from the CRTC. 
 
On CRTC 1, for example, if R3l=5, then the duration of C-HSYNC is approximately 3,1250 µsec, 
while with R3l=6, the duration of C-HSYNC is exactly 4 µsec. 4-3.1250 = 0.875/2 = 0.4375 or 7 
Pixels (graphi mode 2) instead of the expected 8 pixels. If R3L=4, then C-HSYNC lasts 2,1250 
µsec approximately. The difference between 3,1250 and 2,1250 is exactly 1 µsec and the screen 
is in principle well offbeat of 8 pixels. 
 
It is therefore preferable to use the 4/5 values because these two values allows to generate C-
HSYNC signals, the difference of which is very exactly 1 µsec, whatever the type and tolerance of 
the CRTC. A CTM monitor must be adjusted if it loses sync with R3l=4. 
 
Continuously (and CPU-intensive) switching of these values between lines can divide by 2 the 
difference between 2 positions (i.e. a division by 4). 
 
It is also possible to cause oscillation around a given position by varying the C-SYNC positioning 
by 16 (or more) mode 2 pixels between each line. This is done by modifying R2 between each 
line. This technique, imagined by Rhino (Batman group) allows to create pretty frames at the 
origin of acronyms of graphic modes. 
 
R3.JIT technique can shift the end of the HSYNC by 0.25 µsec, therefore it’s possible to obtain 
more combinations.  
 
The following table describes the durations of the C-HSYNC’s expressed in µsec according to the 
values of R3l (in R3.JIT and R3.NJIT mode) and according to the CRTC’s. I indicated a range of 
2 values that I could see, while waiting to have more precise measures. 
 

R3 NJIT R3JIT R3 NJIT R3JIT R3 NJIT R3JIT R3 NJIT R3JIT R3 NJIT

2 2 3 3 4 4 5 5 6

CRTC 0 0,0625 0,3125 1,0525 1,3125 2,0625 2,3125 3,0625 3,3125 4,0000

0,1250 0,3750 1,1250 1,3750 2,1250 2,3750 3,1250 3,3750 4,0000

CRTC 1 0,1250 0,3125 1,1250 1,3125 2,1250 2,3125 3,1250 3,3125 4,0000

0,1875 0,3750 1,1875 1,3750 2,1875 2,3750 3,1875 3,3750 4,0000

CRTC 2 0,0625 0,3125 1,1250 1,3125 2,0625 2,3125 3,0625 3,3125 4,0000

0,1250 0,3750 1,1875 1,3750 2,1250 2,3750 3,1250 3,3750 4,0000

 
When R2 increases by 1, the screen is shifted to the left by 16 pixels M2. 
When R2 decreases by 1, the screen is shifted to the right by 16 pixels M2. 
When R3l increases by 1 (if <6), the screen is shifted to the left by 8 pixels M2. 
When R3l decreases by 1 (if >2), the screen is shifted to the right by 8 pixels M2. 
A precise position of C-HSYNC can therefore be determined by updating both R2 and R3l. 
 
If 2 positions are switched from one line to the other, the CTM monitor tries to synchronize the 
line between these 2 positions. 
 
The "module D test 6" of SHAKER 2.4 demonstrates that it is now possible on CPC to perform a 
smooth hardware scroll at pixel mode 1 (2 M2 pixels) using these different principles.  
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Note :  
A short C-HSYNC may also have a discolouration effect on some non-CTM displays. This is 
for example the case if the CPC is connected to an ATARI SC1425 monitor (which was 
available with the ATARI 520STE).  
 
If the HSYNC is cut to 6 µsec (R3=6), the GATE ARRAY sends black for approximately 2 µsec 
followed by the HSYNC signal of 4 µsec. If the colour of the BORDER has been defined with 
something other than black (which a HSYNC longer than 6 would generate) this has a 
discolouration impact on the line because each colour component is calibrated according to 
the colour present over the following 3 µsec (position 7, 8 and 9).  
 
If the BORDER is not black and R3<9, the colour will be affected on the line. On this type of 
monitor, it is therefore possible to obtain more colours. 
 
This can also cause unexpected results (especially on LCD screens). 

 

14.5 UPDATING R3 DURING HSYNC 
 
It is possible to change the value of R3l when C3l counts, which can affect the length of the 
HSYNC. 
 
If R3l is changed with a value less than C3l, then C3l is overflowing, except for CRTC 1 with a 
value of 0, which cancels the current HSYNC. 
 
The R3.JIT technique consists in modifying R3l with the value of C3l at the time or C0 is on the 
position corresponding to C3 to interrupt the HSYNC wildly. 
 
Unlike the R2.JIT technique, which only affects colorization, R3.JIT also has an impact on the 
duration of the C-HSYNC signal if it is operated during the 4 µsec when produced by the GATE 
ARRAY.  
 
The update of R3 during this count is considered according to the situations described below. 
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14.5.1 CRTC 0, 2 
CRTC-R2=11 / CRTC-R3=10 (HBL Size = 10 chars) 
 

 
 

Z80A (OUT (C),r8) instruction

Register update

HSYNC Zone

Characters displayed  
 
(*) R3.JIT : The precise update of R3l interrupts the HSYNC after 0.25 µsec after its normal end 
if R3l had been programmed in advance. See next Chapters. 

  

R2

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Hsync-GA : Monitor Sync

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R3, 0

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

R3

R2 OUT CRTC-R3, 1

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

R3

R2 OUT CRTC-R3, 2

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2

R3

R2 OUT CRTC-R3, 3

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3

R3

R2 OUT CRTC-R3, 4

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C3: 0 1 2 3 4 (*)

R2 OUT CRTC-R3, 5

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C3: 0 1 2 3 4 5

R3
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14.5.2 CRTC 1 
CRTC-R2=11 / CRTC-R3=10 (HBL Size = 10 chars) 
 
During an R3 update during HSYNC, CRTC 1 behaves like CRTC’s 0 and 2, except when R3 is 
updated to 0. Indeed, the processing of R3=0 (no HSYNC) continues to be managed during 
HSYNC for this CRTC. 
 
On CRTC’s 0 and 2 in this condition, HSYNC continues and 0 is treated as a value to reach. 
 

 
 

Z80A (OUT (C),r8) instruction

Register update

HSYNC Zone

Characters displayed  
 
(*) R3.JIT. The precise update of R3l interrupts the HSYNC after 0.25 µsec after its normal end if 
R3l had been programmed in advance. See next Chapters. 
  

  

R2

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Hsync-GA : Monitor Sync

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R3, 0

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C3: 0 1 2 3 4 (*)

R2 OUT CRTC-R3, 1

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

R3

R2 OUT CRTC-R3, 2

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2

R3

R2 OUT CRTC-R3, 3

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3

R3

R2 OUT CRTC-R3, 4

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C3: 0 1 2 3 4 (*)

R2 OUT CRTC-R3, 5

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C3: 0 1 2 3 4 5

R3
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14.5.3 CRTC 3, 4 
CRTC-R2=11 / CRTC-R3=10 (HBL Size = 10 chars) 
 

 
 

Z80A (OUT (C),r8) instruction

Register update

HSYNC Zone

Characters displayed  
 

  

R2

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Hsync-GA : Monitor Sync

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R3, 0

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

R3

R2 OUT CRTC-R3,1

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

R3

R2 OUT CRTC-R3,2

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2

R3

R2 OUT CRTC-R3, 3

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3

R3

R2 OUT CRTC-R3, 4

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4

R3

R2 OUT CRTC-R3, 5

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5

R3

R2 OUT CRTC-R3, 6

C0 from Vcc : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 Displayed: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6

R3
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14.5.4 ZOOM ON R3.JIT 
 
If R3l is modified via an OUT(C),r8 with the value of C3l when C0 is at position which 
corresponds to C3l while R3l was greater than this value, then the HSYNC stops on CRTC’s 0, 1 
and 2. This technique is called R3.JIT 
 
The use of OUTI does not allow this technique to be used on these CRTC’s. 
 
Whether with OUT(C),r8 or OUTI, this technique does not work on CRTC’s 3 and 4, which 
synchronize the HSYNC with the display. 
 
When a HSYNC starts, it does so at different positions depending on the CRTC’s. 
 
See Chapter 9.3.4.2, page 52 for more details on this subject. 
 
The update of R3l can be carried out on all the positions of C0 during which the HSYNC takes 
place. 
 
On the CRTC’s 0 and 1, the first µsecond of HSYNC is special, because interrupting it with the 
value 0 interrupts the HSYNC prematurely instead of delaying its end by 0.25 µsec. 
 
Note 1: Interrupting R3 with 0 using an OUTI prevents the HSYNC from starting. 
 
The value R3=0 for a CRTC 2 means that the HSYNC will be 16 µsec. 
 
On R3.JIT with R3=0, the end of the HSYNC takes place after the last Pixel-M2 of the current 
µsec. 
 
 
On a CRTC 0, the HSYNC starts on the 5th pixel-M2 and lasts 4 pixel-M2’s. 
 
On a CRTC 1, the HSYNC starts on the 6th pixel-M2 and lasts 3 pixel-M2’s. 
 
Note 2: On CRTC 1, in R3.NJIT (or with OUTI), the HSYNC ends 1 Pixel-M2 later than for CRTC 0 
and 2. 
 
The following diagrams describe the positioning of the HSYNC in R3.JIT. 
 
The HSYNC is 1 pixel-M2 longer on the GA 40007 and 40008 compared to the GA 40010. 
 
The possibility of changing graphics mode is indicated on the diagrams. 
 
It must also be considered that going from MODE 2 to another MODE "adds" 1 pixel M2 (9 pixels 
are generated from a byte) and going from MODE 0,1 or 3 to MODE 2 "subtracts" 1 pixel M2 (7 
pixels are generated from one byte). 
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14.5.4.1 R3.JIT ON CRTC 0 
 

C0 C0=R2 C0=R2+1 C0=R2+2

Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 5th µs OUTI (I/O R3=0)

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 3rd µs OUT (C),r8 (I/O R3=0) 4th µs OUT(C),r8

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 4th µs OUTI 5th µs OUTI (I/O R3=1)

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 2nd µs OUT (C),r8 3rd µs OUT (C),r8 (I/O R3=1) 4th µs OUT(C),r8

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Mode

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Update

Z80a 3rd µs OUTI 4th µs OUTI 5th µs OUTI (I/O R3=2)

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Mode

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Update

Z80a 1st µs OUT (C),r8 2nd µs OUT (C),r8 3rd µs OUT (C),r8 (I/O R3=2)

 

14.5.4.2 R3.JIT ON CRTC 2 
C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 4th µs OUTI 5th µs OUTI (I/O R3=1)

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 2nd µs OUT (C),r8 3rd µs OUT (C),r8 (I/O R3=1) 4th µs OUT(C),r8

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Mode

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Update

Z80a 3rd µs OUTI 4th µs OUTI 5th µs OUTI (I/O R3=2)

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Mode

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Update

Z80a 1st µs OUT (C),r8 2nd µs OUT (C),r8 3rd µs OUT (C),r8 (I/O R3=2)  



V1.5 – 03.2023 – Page 130 / 281 
 

14.5.4.3 R3.JIT ON CRTC 1 
 

C0 C0=R2 C0=R2+1 C0=R2+2

Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 5th µs OUTI (I/O R3=0)

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 3rd µs OUT (C),r8 (I/O R3=0) 4th µs OUT(C),r8

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 4th µs OUTI 5th µs OUTI (I/O R3=1)

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 2nd µs OUT (C),r8 3rd µs OUT (C),r8 (I/O R3=1) 4th µs OUT(C),r8

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Mode

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Update

Z80a 3rd µs OUTI 4th µs OUTI 5th µs OUTI (I/O R3=2)

C0 C0=R2 C0=R2+1 C0=R2+2

40010 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Mode

40007/8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Update

Z80a 1st µs OUT (C),r8 2nd µs OUT (C),r8 3rd µs OUT (C),r8 (I/O R3=2)

 

14.5.4.4 NO R3.JIT ON CRTC 4 
 

 
 
  

C0 C0=R2 C0=R2+1 C0=R2+2

Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 4th µs OUTI 5th µs OUTI (I/O R3=1)

Z80a 3rd µs OUT (C),r8 4th µs OUT (C),r8 (I/O R3=1)

C0 C0=R2+1 C0=R2+2 C0=R2+3 Mode

Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Update

Z80a 4th µs OUTI 5th µs OUTI (I/O R3=1)

Z80a 3rd µs OUT (C),r8 4th µs OUT (C),r8 (I/O R3=1)
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14.6 ABSENCE OF HSYNC 
 
When R3=0, CRTC’s 0 and 1 do not produce HSYNC (and therefore no interruption). 
 
On CRTC’s 2, 3 and 4, it is impossible not to generate HSYNC if the C0=R2 condition is satisfied. A 
value of 0 in R3 will generate a HSYNC of 16 μsec, unless it is interrupted by modifying R3 during 
HSYNC. 

14.7 HSYNC START-UP 

14.7.1 CRTC 0, 1, 2 
 
When C0=R2 then a HSYNC is generated over a length of R3 characters.  
R2 update occurs during the 3rd μsec of the OUT(C),reg8 instruction. 
 
When the update of R2 takes place before C0 reaches R2, the HSYNC is processed by the 
GATE ARRAY during the display of the previous character, the character C0=R2 having not yet 
been displayed by the GATE ARRAY. 
 
In this situation, the HSYNC black zone does not start exactly on a character boundary, and not at 
the same position according to the CRTC’s.  

 CRTC 0 : The non-display associated to the HSYNC starts from the start of the 5th mode 
2 pixel after the start of the displayed CRTC R2-1 character. It was however observed 
the display of half of the 4th Pixel-M2. 

 CRTC 1 : The non-display associated to the HSYNC starts from the start of the 6th mode 
2 pixel after the start of the displayed CRTC R2-1 character. 

 CRTC 2 : The non-display associated to the HSYNC starts from the start of the 4th mode 
2 pixel after the start of the displayed CRTC R2-1 character. It was however observed 
the display of half of the 3rd Pixel-M2. 
 

If the update of R2 occurs while C0=R2 (during the 3rd µsec of an OUT(C),r8) then the CRTC 
sends the HSYNC signal later to the GATE ARRAY. This reflects a delay between the execution of 
the instruction in Z80A and the consideration by the CRTC. 
 
However, if this update is performed via the OUTI instruction (during the 5th µsec of the 
instruction) then the HSYNC signal is sent faster to the GATE ARRAY by 0.25 µsec, which then 
behaves as if R2 had been programmed before that C0=R2. 
 
A R2.JIT (“Just In Time”) update performed with an OUT(C),r8 causes the HSYNC black zone to 
appear later than in other situations (R2 programmed before C0=R2 or i/o OUTI on C0=R2) 
 
In this situation, the stop position of the display depends on the type of CRTC: 

 CRTC 0, 1: The non-display associated to the HSYNC starts from the start of the 9th 
mode 2 pixel after the start of the displayed CRTC R2-1 character. It was however 
observed the display of half of the 8th Pixel-M2. 

 CRTC 2: The non-display associated to the HSYNC starts from the start of the 8th mode 
2 pixel after the start of the displayed CRTC R2-1 character. It was however observed 
the display of half of the 7th Pixel-M2. 
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The HSYNC duration remains counted down with the value programmed in R3 (unless R3 is 
modified during the HSYNC). The delayed display of the HSYNC black zone does not change the 
synchronization of the monitor with respect to an anticipated R2 programming. 
 
This special case of update (R2.JIT) allows delaying of the start of the displayed HSYNC by 4 
mode 2 pixels (i.e. 0.25 µsec) (1 T-State) on CRTC’s 0 and 2, and 3 mode 2 pixels (0 .1875 µsec) 
on CRTC 1. 
 
This technique allows delaying of the end of display by the GATE ARRAY of the black zone from 
0.1875 to 0.25 µsec. This is interesting in the event of a change of graphic mode during a line to 
limit the area of absence of display. It should nevertheless be considered that mode 2 is displayed 
1 pixel (0.0625 µsec) earlier by the GATE ARRAY than for the other graphic modes. 
 
On the diagrams on the following pages, R3 is fixed at 2. 
R2 before modification is greater than 10. 

14.7.2 CRTC 3, 4 
 
When C0vs=R2 then a HSYNC will be generated. 
 
This update is considered in order to correspond to the display of the character corresponding to 
C0 by the GATE ARRAY, but the test is nevertheless carried out with respect to C0vs. 
 
An R2.JIT (“Just In Time”) update carried out with an OUT(C),r8 does not cause the HSYNC black 
zone to appear later than in the other situations since the HSYNC is deferred. 
 
The CRTC 4 ASIC simulates the GATE ARRAY, insofar as the display of pixels in mode 2 begins 1 
Pixel-M2 before the display of pixels in the other graphics modes. 
On this CRTC, the display stop linked to the HSYNC starts from the 19th mode 2 pixel after the 
start of the displayed CRTC R2-1 character. However, the display of half of this 19th Pixel-M2 pixel 
was observed. 
 
As a reminder, an I/O via an OUT(C),r8 takes place during the 4th µsec of the instruction on 
CRTC’s 3 and 4. An I/O on the OUTI instruction takes place during the 5th µsecond of the 
instruction, as for other CRTC’s. 
 
The diagrams below illustrate the previous remarks by showing the positioning of the HSYNC 
according to the moment when the update of R2 takes place and according to the instruction 
used. 
 
The CRTC 3 diagram will be added in a later version. Currently assumed to be the same as CRTC 
4, but with HSYNC starting on the 17th pixel after the start of the displayed CRTC R2-1 character. 

14.8 HSYNC AND INTERRUPTIONS 
 
Updating the HSYNC size changes when an interrupt is generated. The GATE ARRAY triggers an 
interrupt just after the HSYNC end, under certain conditions. 
 
See Chapter 26, page 269 . 
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14.9 HSYNC SCHEMATICS 
 
The following page describes the display of the black color at the beginning and at the end of an 
HSYNC produced by the GATE ARRAY. 
 
When a VSYNC ends (at the end of the 26th HSYNC), the black color stops 1 PixelM2 after the end 
of an HSYNC for CRTC’s 0 and 1. 
 
It stops at the same time for CRTC’s 2, 3 and 4. 
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CRTC 0 

Z80A instruction   R2-NJIT / OUT(C),r8 CRTC-R2=10 I/O >> x
  R2-NJIT / OUTI CRTC-R2=10 IO >> x x
  R2-NJIT / OUTI CRTC-R2=10 I/O >> x

C0 from Vsync 7 8 9 10 11 12 13

C0 disp by Gate Array 6 7 8 9 10 11 12

Byte Offset (0.5 µsec) 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Pixel Mode 2 (0.0625 µSec) 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

Pixel Mode 0 ,3 (0,25 µsec) 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Pixel Mode 1 (0,125 µsec) 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 96 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

 32 M2-Pixels -  2 µsec

Z80A instruction   R2-JIT / OUT(C),r8 CRTC-R2=10 I/O >> x

C0 from Vsync 7 8 9 10 11 12 13

C0 disp by Gate Array 6 7 8 9 10 11 12

Byte Offset (0.5 µsec) 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Pixel Mode 2 (0.0625 µSec) 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

Pixel Mode 0 ,3 (0,25 µsec) 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Pixel Mode 1 (0,125 µsec) 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 96 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

28 M2-Pixels -  1.75 µsec  
CRTC 1 

Z80A instruction   R2-NJIT / OUT(C),r8 CRTC-R2=10 I/O >> x
  R2-NJIT / OUTI CRTC-R2=10 IO >> x x
  R2-NJIT / OUTI CRTC-R2=10 I/O >> x

C0 from Vsync 7 8 9 10 11 12 13

C0 disp by Gate Array 6 7 8 9 10 11 12

Byte Offset (0.5 µsec) 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Pixel Mode 2 (0.0625 µSec) 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

Pixel Mode 0 ,3 (0,25 µsec) 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Pixel Mode 1 (0,125 µsec) 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 96 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

 32 M2-Pixels -  2 µsec

Z80A instruction   R2-JIT / OUT(C),r8 CRTC-R2=10 I/O >> x

C0 from Vsync 7 8 9 10 11 12 13

C0 disp by Gate Array 6 7 8 9 10 11 12

Byte Offset (0.5 µsec) 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Pixel Mode 2 (0.0625 µSec) 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

Pixel Mode 0 ,3 (0,25 µsec) 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Pixel Mode 1 (0,125 µsec) 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 96 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

29 M2-Pixels -  1.8125 µsec

 
CRTC 2 

Z80A instruction   R2-NJIT / OUT(C),r8 CRTC-R2=10 I/O >> x
  R2-NJIT / OUTI CRTC-R2=10 IO >> x x
  R2-NJIT / OUTI CRTC-R2=10 I/O >> x

C0 from Vsync 7 8 9 10 11 12 13

C0 disp by Gate Array 6 7 8 9 10 11 12

Byte Offset (0.5 µsec) 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Pixel Mode 2 (0.0625 µSec) 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

Pixel Mode 0 ,3 (0,25 µsec) 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Pixel Mode 1 (0,125 µsec) 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 96 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

 33 M2-Pixels -  2.0625 µsec

Z80A instruction   R2-JIT / OUT(C),r8 CRTC-R2=10 I/O >> x

C0 from Vsync 7 8 9 10 11 12 13

C0 disp by Gate Array 6 7 8 9 10 11 12

Byte Offset (0.5 µsec) 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Pixel Mode 2 (0.0625 µSec) 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

Pixel Mode 0 ,3 (0,25 µsec) 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Pixel Mode 1 (0,125 µsec) 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 96 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

29 M2-Pixels -  1.8125 µsec  
CRTC 4 

Z80A instruction   R2-JIT / OUT(C),r8 CRTC-R2=10 I/O >> x
  R2-NJIT / OUTI CRTC-R2=10 IO >> x x
  R2-JIT   / OUTI CRTC-R2=10 I/O >> x

C0 from Vsync 7 8 9 10 11 12 13

C0 disp by Gate Array 6 7 8 9 10 11 12

Byte Offset (0.5 µsec) 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Pixel Mode 2 (0.0625 µSec) 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

Pixel Mode 0 ,3 (0,25 µsec) 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Pixel Mode 1 (0,125 µsec) 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 96 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103  
 
CRTC 3 
to come. 
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15 SYNCHRONIZATION : REGISTER R2 

15.1  GENERAL 
 
The CRTC R2 register allows to define the activation condition of the CRTC HSYNC signal. 
This signal becomes "high" when C0vs reaches R2. 
 
During HSYNC, in principle, nothing is displayed anymore. 
 
The length in μsec of the HSYNC-CRTC is fixed with the 4 less significant bits of the R3 register. 
See Chapter 14.1, page 120. 
 
The timing of HSYNC is different for different CRTC’s and is not based on the beginning of a 
CRTC character. See Chapter 14.4, page 122. 
 
The display of pixels does not start (and does not stop) on a word boundary, see byte (depending 
on conditions) for HSYNC. See Chapter 14.7, page 131. 
  
The GATE ARRAY is faster to manage HSYNC than to display characters read by CRTC’s 0, 1 and 
2. The HSYNC starts earlier and is "visible" on the character preceding the one pointed by R2, 
which has not yet been displayed. 
 
THE ASIC’s (CRTC’s 3 and 4) manage a HSYNC consistent with the C0 value displayed, delaying 
the display of the HSYNC by 1 μsec. 
 
Examples : 

 If R2 is 10, on a CPC with CRTC (0, 1 and 2) then HSYNC starts from C0 displayed=9 
(R2-1) over a length of R3 μsec. 

 If R2 is 10, on a CPC with "CRTC" (3 and 4) then HSYNC starts from C0 displayed=10 
over a length R3 μsec. 

 
Because of this discrepancy, the calibration of a CM14 monitor (464+/6128+) is different from 
that of a CTM 640/644 (464/664/6128). 
 
The CRTC 4 does not come with a CM14, but it behaves like a CPC+ at the HSYNC signal. 
AMSTRAD calibrated the CTM delivered with this CPC so that the frame is centered on screen. 
Connected to the CTM 640/644 of another CPC (with a CRTC 0, 1, 2), the image is shifted to the 
left because  HSYNC occurs 1 µsec later.  
 
In order to ensure visual compatibility with the other CRTC’s, this can be overcome by 
programming R2 with a value 1 lower than that programmed for other CRTC’s. But without a 
calibration menu, it's impossible to know if the CRTC 4 is plugged into its original monitor. 
 
Conversely, plugging a CRTC 0, 1, or 2 CPC into a CM14 monitor or the CTM of a CRTC 4 should 
cause a shift to the right of the image. 
 
On a CTM monitor, the first character visible on the left is the 15th character from the C0=R2 
position if R3>5. (If R2=49 (with R0=63), the 1st visible character is C0=63). 
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This difference between consideration and display does not change the CRTC's counter 
management behaviour when R2 and R3 are modified. 
 
As we have seen, the GATE ARRAY is slower to display characters than to take into consideration 
the HSYNC signal, but there is also a delay between the instruction of the Z80A that 
updates the CRTC and the speed of the latter to consider. 
 
Thus, if R2 is modified very precisely on the character (CRTC) concerned, the CRTC receives the 
information slightly later, reflecting here the internal delays specific to the Z80A OUT instruction. 
This slightly reduces the size of the "displayed" HSYNC. See Chapter 14.9 page 133. 
 
The CRTC has a period during which it "agrees" to consider R2. 
 
The GATE ARRAY in this situation, receives the HSYNC signal slightly later, which has an impact 
on the "displayed" length of the HSYNC. 
 
HSYNC treatment begins with HSYNC-GA treatment, which lasts a maximum of 6 μsec. The 
monitor synchronizes for each line thanks to the C-HSYNC signal generated during the HSYNC-GA 
 
If the C-HSYNC signal changes position or length several times during scanning this leads to an 
image distortion by the monitor. 
 
If the C-HSYNC signal changes position or length (and if this length exceeds 2 μsec) several times 
during scanning it causes distortion of the image by the monitor. 
 
The C-HSYNC signal is sent between 1,875 and 2 µsec after the start of the HSYNC.  If R3l is 2, 
the signal is too short to be processed by the monitor deflector circuit. The HSYNC-GA is 
dependent on the HSYNC-CRTC (start and length): 

 It begins when the CRTC HSYNC signal becomes active. 
 It stops when the CRTC HSYNC signal becomes inactive and lasts less than 6 µsec. 

 
When R3l is greater than 2, the length of the C-HSYNC signal generated by the GATE ARRAY 
becomes sufficient for the monitor to try to synchronize the line displayed. 
 
Distortion effects may appear: 

 If the HSYNC is too short (>2 μsec and < 6 μsec) (C-HSYNC>0 and <4 µsec). 
 If multiple HSYNC of length > 2 μsec are generated on the same line. 
 If the HSYNC(s) are not vertically aligned. 

 
During a HSYNC, the different CRTC’s no longer manage the C0=R2 condition, which prevents a 
HSYNC from restarting within a HSYNC. 
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15.2  HSYNC WHEN R2 IS PREDEFINED 
 
The following diagrams show the generation of HSYNC, as it occurs when R2 was programmed 
before C0vs=R2, which is in principle the general case.  
 
The characters are indicated according to the two timelines, since the HSYNC is managed without 
"delay" by the GATE ARRAY. 

15.2.1 CRTC’s 0, 1, 2 
 
CRTC-R2=46 
CRTC-R3=14 

 

15.2.2 CRTC’s 3, 4 
 
CRTC-R2=46 
CRTC-R3=14 

 

  

R2

C0 from VSYNC 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

C0 from GA (disp) 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1

Hsync-GA: Monitor Sync

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R3

Characters displayed

Hsync "displayed"

R2

C0 from VSYNC 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

C0 from GA (disp) 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1

Hsync-GA: Monitor Sync

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R3

Characters displayed

Hsync "displayed"
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15.3  UPDATING R2 DURING HSYNC 

15.3.1 GENERAL 
 
During the processing of HSYNC CRTC, an update to R2 is no longer considered if the purpose of 
this change is to start a new HSYNC during HSYNC. 
 
This lack of consideration avoids a crash of the circuit, which would only generate HSYNC in the 
situation or R0 would be less than R3. This is particularly the case when R0 is less than R3, which 
implies that C0 can pass several times on the same value (equal to R2). 
 
On CRTC 0, two HSYNC’s cannot be contiguous if position C0=R2 is encountered when C3l 
reaches R3l, and R3l has not been modified on this position. 
 
On the CRTC’s 1, 2, 3 and 4, there is a bug if C0=R2 on C0=R2+R3. 

15.3.2 INFINITE HSYNC 
 
The R2 management bug on CRTC’s 1, 2, 3 and 4 allow for the creation of an infinite HSYNC (and 
beyond). 
 
If, for example, we place R0=0, R2=0 and R3=1, we will ask the CRTC to generate a HSYNC of 1 
μSec at the position C0=R2=0 and ask it to make a HSYNC for all the μsec. 
 
On the 2nd character, C0 is still equal to R2 (=0). 
 
On a CRTC 0, the HSYNC will not take place. It will occur on the 3rd C0=0. 
 
On the other CRTC’s, the HSYNC does not end and C3 will overflow. 
C3 will increment up to 15, return to 0 and then back to 1. 
 
At the end of the overflow of C3, if C0 is still equal to R2 (= 0), then the HSYNC will again 
continue its route, and C3 overflow again, and so on. 
 
The differences in the consideration of R2 according to the CRTC’s are detailed on the diagrams 
below and describe the update of R2 on different values of C0VS during the HSYNC, and its 
impact. 
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15.3.3 CRTC 0 
 
CRTC-R2=11 / CRTC-R3=10 (HSYNC Size=10 chars) 

 

When C3L reaches R3l on position C0=R2+R3l, the HSYNC-CRTC stops (more precisely the black 
color stops from bit 3 of the displayed byte (e.g. the bits 7.6.5.4 are black)). 
  
On this position, if C0 is again equal to R2 but R3l is modified, then a new HSYNC-CRTC begins 
without C3l being zeroed (in the same way as for the other CRTC’s on this same position without 
R3l has been modified before). 
 
This new HSYNC-CRTC "unexpected" begins around 3.5 Pixel-M2 after the one that has just 
ended. This corresponds to the start of a R2.JIT HSYNC (Just In Time). The diagram in chapter 
9.3.4.2 shows how an HSYNC with R2.JIT technique begins on this CRTC. 
 

 

R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Hsync-GA: Monitor Sync

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 17 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 18 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 19 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 20 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 21 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 22 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

R3 R3

Characters displayed

Hsync "displayed"

R2=11 R2 OUT R2, 21 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Hsync-GA: Monitor Sync Monitor Sync

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

R3=10 OUT R3, 1 R3
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The GATE ARRAY begins a HSYNC again and generates a signal for the monitor if the new limit 
scheduled in R3l leads the HSYNC to last more than 1,1875 µsec additional (in other words if R3l 
is >= 2). 

15.3.4 CRTC’s 1,2 
 
CRTC-R2=11  / CRTC-R3=10 (HSYNC Size=10 chars) 

 
 
If C0 is equal to R2 on position C0=R2+R3l, the C3l counter overflows (see before the last 
diagram above). The HSYNC CRTC continues until C3l buckles to reach R3l. An R3l update is 
considered immediately to bypass the absence of a C3l zeroing. 
 
The CRTC 1, however, has time to generate an "invisible" end of HSYNC, then immediately 
reactivate the signal for the GATE ARRAY. The latter then reset to 0 its internal character counter 
and sends a second HSYNC monitor from the 2nd position (position C0vs=23 in the example 
above). The transition from HSYNC OFF/ON is fast enough to not be visible. 
 
The CRTC 2 does not have time to generate an end of HSYNC and the GATE ARRAY continues to 
display the black color until the HSYNC of the CRTC occurs (when C3l is again equal to R3l). 
 

  

R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Hsync-GA: Monitor Sync

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 17 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 18 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 19 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

C3: 0 1 2 3 4 5 6 7 8 9

R2 OUT CRTC-R2, 20 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 21 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10

Hsync-GA CRTC 1: Monitor Sync Monitor Sync R3

Hsync-GA CRTC 2: Monitor Sync

R3

R2 OUT CRTC-R2, 22 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

C3: 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

R3 R3

Characters displayed

Hsync "displayed"
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15.3.5 CRTC’s 3,4 
 
CRTC-R2=11 /  CRTC-R3=10 (HSYNC Size=10 chars) 

 
 
  

R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Hsync-GA: Monitor Sync

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 17 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 18 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 19 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 20 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

C3: 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 21 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Hsync-GA: Monitor Sync

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10

R3

R2 OUT CRTC-R2, 22 R2

C0 from VSYNC 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

C0 from GA Disp 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

C3: 1 2 3 4 5 6 7 8 9 10 10 1 2 3 4 5 6 7 8 9 10 10

R3 R3

Characters displayed

Hsync "displayed"
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15.4 VSYNC CONSIDERATION DURING HSYNC 

15.4.1 GENERAL 
 
On CRTC’s 0, 1 and 2, the evaluation of the VSYNC condition is carried out on either the C0 value. 
C4 must be equal to R7, either because C4 arrives there, or because R7 has been programmed 
with the value of C4. This is also true when C4 reaches R7 from additional line management. 
 
On CRTC’s 3 and 4, the assessment of the VSYNC condition only takes place when C4 goes to R7. 
If R7 is modified with C4, the VSYNC does not occurs. 
 
For all CRTC’s except the CRTC 2, there is no problem with a VSYNC condition occurring during 
HSYNC. See the following paragraph for details on CRTC 2. 
 
The value of R2 has been applied to a full frame in the following schemas and describes HSYNC’s 
of different lengths that encroach on the VSYNC test area. 
 
The part of the line on the diagrams is the one that corresponds to C4=R7-1 (or previous if R7 is 
0), C9=7 (when R9=7). 

15.4.2 CRTC 0, 1 
 

 
 

 

  

R2 Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3=12 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12

R3

R2 Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3=13 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13

R3

R2 Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3=14 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R3

R2 Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3=15 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R3
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15.4.3 CRTC 3, 4 
 

 

15.4.4 CRTC 2 
 
The VSYNC condition is evaluated for all values of C0 during which C4=R7. 
 
If this evaluation occurs while the HSYNC is in progress, then a GHOST VSYNC starts. 
 
As we have seen in the previous chapter, 2 HSYNC’s cannot be glued without the first HSYNC 
overflowing, which implies that the processing of the HSYNC is not completely completed on the 
position C0=R2+R3l-1 because the counter has not yet been reset. 
 
A VSYNC condition taking place on a position between C0=R2 and the position of C0 after 
R3l+1 characters will therefore trigger a GHOST VSYNC, unless R2=0. 
 
When R2=0, the HSYNC starts on C0=0, but the VSYNC has had time to be processed and it 
occurs normally. 
 
If the VSYNC condition were only "ignored" during the HSYNC, it would occur immediately when 
leaving HSYNC, since the C4=R7 condition is still true, and the evaluation takes place on all values 
of C9 and C0. 
 
There is certainly a nice conflict on the activation of the VSYNC pin (pin 40) when the HSYNC pin 
(pin 39) is yet in the high state. 
  
VSYNC can no longer occur because the CRTC has enabled its HSYNC counter and will therefore 
only be able to accept a new VSYNC condition when GHOST VSYNC is completed.  
 
  

R2 Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3=12 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12

R3

R2 Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3=13 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13

R3

R2 Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3=14 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R3

R2 Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3=15 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R3
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The following diagram precisely describes the inhibition of VSYNC when R7 is modified with the 
current C4: 

 
 
The following diagrams describe the different values of C0 on which the VSYNC condition is 
evaluated according to the value of R2 and R3: 

 
 
It is possible to circumvent CRTC 2's limitation to treat its VSYNC in several ways if you want to 
position R2 and R3 freely. 
 
One solution is to manage R7 yourself, so that the VSYNC cannot be processed during HSYNC, 
and position R7 with C4 once the HSYNC is finished. 
 
The FAKE VSYNC mentioned in chapter 7.3 does not work properly on all the CPC’s I have been 
able to test. It is therefore a solution to avoid while we don’t know what this difference is related 
to and whether it can be overcome. From my observations, it is not the update of bit 0 with 1 of 
the PPI's port B that generates a VSYNC, but rather the precise moment when the CRTC cancels 
the GHOST VSYNC. 
 
Another solution is to change the size of the HSYNC at the right time. 
The value of R3 is then reduced at the time the VSYNC condition is to be evaluated. 
 
By doing so, VSYNC takes place normally. 

R2

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C0 from VSYNC 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

OUT R7,C4 REAL VSYNC

OUT R7,C4 GHOST VSYNC

… GHOST VSYNC

OUT R7,C4 GHOST VSYNC

OUT R7,C4 REAL VSYNC

R2 Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3=12 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12

R3

R2 Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3=13 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 12

R3

R2 No Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3=14 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R3

R2 No Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3=15 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R3
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Note 1:  
If R2 and R3 are programmed so that the HSYNC ends on the next line, it means that there are 2 
HSYNC’s per line. But we also have an active HSYNC on C0=0 and the “Last Line” condition is 
then not evaluated. Given that it is false at the start of the line, this causes the overflow of C4 at 
the end of the frame (See Chapter 10.3.3). 

15.5  BORDER AND HSYNC 

15.5.1 CRTC 0, 1, 3, 4 
 
The management of background or BORDER display, with conditions C0=0 and C0=R1, is 
considered for all CRTC’s except 2. 

15.5.2 CRTC 2 
 
The condition for restoring the background display occurs when C0=0 (and C4 has never reached 
R6). 
BORDER is enabled when C0=R1. 
However, during HSYNC, this C0=0 test is not performed. 
(to see if it is the same with C0=R1 to activate the BORDER) 
 
In this condition, BORDER is not disabled. 
That is BORDERLINE, we can say! 

15.6 CRTC 2 AND HSYNC 
 
The CRTC 2 is the champion in the differences when handling certain conditions occurring on 
specific values of C0 during a HSYNC: 

 When the programming of R2 and R3 causes C0 to reach the position preceding C0=0. 
If a HSYNC takes place on this position, then the VSYNC on C4=R7 is considered 
activated but without the VSYNC signal being transmitted to the GATE ARRAY (GHOST 
VSYNC). If R7 is programmed with the value of C4 during HSYNC, this triggers a GHOST 
VSYNC.  

 If R2 is programmed with 0, the VSYNC condition is detected early enough to 
occur normally. 

 A HSYNC placed on position C0=0 does not allow the BORDER to be deactivated before 
a next C0=0. 

 A “Last Line” condition effective on position C0=0 is cancelled if a HSYNC is placed on 
position C0=0. Also, C4 increments instead of going to 0 at the end of the frame. 

 An update of R4 or R9 is ignored if it occurs during a HSYNC to set the “Last Line” 
state to true. 

R2 OUT R3, 12 Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3 init=14 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R2 OUT R3, 12 Vsync

C0 from VSYNC 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2 3

C0 from GA 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0 1 2

R3 init=15 C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Some examples : 
 

 If R0=63, R2=50 and R3=14, then the frame scrolls without a black band. The display 
is on but there is no more VSYNC. 

 If R0=63, R2=50 and R3=15, then the frame is no longer displayed, it scrolls without a 
black band. The display is off (Border), there is no more VSYNC and C4 continuously 
overflows. 

 If R0=63, R2=0 and R3=6, then the frame is no longer displayed but a black band 
scrolls. The display is deactivated (Border), the VSYNC is present but C4 overflows and 
therefore the frame scrolls. 

15.7 THE RIGHT MOMENT... 
 
If R2 is updated without "precautions", a new HSYNC may occur during or after the end of the 
current line. In this situation, the monitor must handle multiple HSYNC’s or the absence of HSYNC 
after the update, and this results in horizontal distortion of the image.  
 
The monitor tries to set its image to the new position of C0=R2.  Since it takes several lines to 
achieve this, this results visually in a gradual shift of the lines. This is the same principle as when 
the length of the HSYNC is changed with a value of less than 6 to shift the image. 
 
Many demos have used these principles (R2 and/or R3) to perform horizontal image distortions or 
scrolling.  
 
As for R7 at the vertical level, it is possible to avoid this horizontal synchronization stall of the 
monitor by acting so that C0 returns to the new value of R2 in the same place as the old value of 
C0=R2. This requires modifying R0 so that it goes back to 0 earlier if the new C0=R2 to be 
reached is higher than the old one, or conversely to enlarge R0 so that C0 goes back to 0 later if 
the new C0=R2 to be reached is lower than the old one. You just have to imagine that it is the 
counters that come to place where they should be. 
 
These little gymnastics of repositioning the counters prevent the monitor from losing the HSYNC 
(or having two in less than 64 μsec), which can be annoying for a program which cannot suffer 
this type of visual artifact.  
 
Otherwise, if the CPC is not intended to serve the video broadcasting diktat of the organizers of 
large competition meetings (to which the diktat mentioned in Chapter 16.7 is subject) or adapt to 
pretty LCD flat screens, it is always possible to hide this stall by modifying R2 in an area not 
displayed (for example during the VSYNC). 
 
It is also possible, as per vertical synchronisation, to act on R1 and / or R6, or even set all the inks 
to black at a "specific time".  
 
Setting the H-Hold potentiometer, however, requires a small flat screwdriver to be set to a CTM 
monitor. 
Here are nevertheless 2 diagrams to translate the gymnastics of the counters necessary to go 
from R2 from 46 to 50 and vice versa, from 50 to 46 (the choice of these values being neither 
fortuitous nor independent of my will) without traumatizing the screen. 
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15.7.1 GO FROM R2=46 TO R2=50 ON 64 μSEC LINES. 
 

R2 R0

C0: 0 1 2 3 4 5 6 … 42 43 44 45 46 47 48 … 56 57 58 59 60 61 62 63

R2 R0

C0: 0 1 2 3 4 5 6 … 42 43 44 45 46 47 48 … 56 57 58 59 0 1 2 3

OUT R0,59 (63-(50-46))

R2 R0

C0: 4 5 6 7 8 9 10 … 46 47 48 49 50 51 52 … 60 61 62 63 0 1 2 3

OUT R0,63 OUT R2,50

 
 

15.7.2 GO FROM R2=50 TO R2=46 ON LINES OF 64 µsSEC 
 

R2 R0

C0: 0 1 2 3 4 5 6 … 46 47 48 49 50 51 52 … 56 57 58 59 60 61 62 63

R2

C0: 0 1 2 3 4 5 6 … 46 47 48 49 50 51 52 … 56 57 58 59 60 61 62 63

OUT R0,67 (63+(50-46))

R0 R2

C0: 64 65 66 67 0 1 2 … 42 43 44 45 46 47 48 … 52 53 54 55 56 57 58 59

OUT R2,46 OUT R0,63

R0

C0: 60 61 62 63 0 1 2 … 42 43 44 45 46 47 48 … 53 53 54 55 56 57 58 59  
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16 SYNCHRONIZATION : REGISTER R7 

16.1 GENERAL 
 
The R7 register is used to fix the moment when the CRTC activates its VSYNC signal. 
This signal is received by the GATE ARRAY, which supports the vertical synchronization signal 
sent to the monitor. 
 
The CRTC VSYNC signal is generated when C4 reaches R7. 
However, there are some exceptions, specific to each CRTC. 
 
When the VSYNC CRTC begins, the GATE ARRAY supports completely (or partially on CRTC’s 3, 4) 
the monitor synchronization signal. The GATE ARRAY initializes in particular a V26 counter with 
value 0, which will be incremented at the end of each HSYNC. 
 
When V26 reaches 2, the GATE ARRAY activates a "composite" synchronization C-SYNC signal for 
the monitor, until V26 reaches 6. 
This duration represents 4 lines of 64 µseconds in a standard case (R0 = 63). 
 
Note : The V26 counter management by the GATE ARRAY takes place whatever the size of the 
HSYNC encountered. If R3l=1 after the start of the VSYNC, the 1 µsec HSYNC’s encountered when 
C0=R2 will update the V26 HSYNC counter of the GATE ARRAY just before C0=R2+1. 
 
It is from the VSYNC signal sent by the GATE ARRAY that the monitor beam rises diagonally 
upwards, zigzagging to reposition itself on the character where the signal was received: 
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The vertical deflector of the monitor constantly descends at a constant speed. Although 
deliberately exaggerated in the diagram above, the beam descends when displaying the image 
from left to right. This cannot be seen thanks to internal tilt adjustments. This phenomenon is less 
noticeable when the beam returns from right to left because the horizontal deflector goes faster 
during a HBL and the slope is less. 
 
During the VSYNC period, the GATE ARRAY does not display a character, but the CRTC continues 
to manage its counters and pointers. According to the Motorola documentation ("MC6845 AD1-
465N Fig 14. CRTC Vertical Timing") this has not always been the case. 
 
This physical return of the electron beam by the monitor is also called Vertical Blanking Line (VBL) 
because of the real absence of display. 
 
The size of the CRTC VSYNC is expressed in number of lines, each time C0=0. 
This number of lines can be programmed on CRTC’s 0, 3 and 4 (via register R3h). 
It is fixed at 16 for CRTC’s 1 and 2 (and for CRTC’s 0, 3, 4 when R3h=0). 
 
The size of the VSYNC of the GATE ARRAY is expressed in number of HSYNCs, each time 
C0=R2. This is the only way for the GATE ARRAY to count the lines it uses to time out the time of 
the VSYNC. The sending of the C-VSYNC synchronization signal to the monitor by the GATE 
ARRAY is a step in its processing. 
 
The size of the C-VSYNC signal sent by the GATE ARRAY to the monitor is the delay 
between the end of the 2nd HSYNC-CRTC and the end of the 6th HSYNC-CRTC. This duration is 
capped on CRTC’s 3 and 4 by the number of VSYNC lines programmed in R3h (see following 
chapters). 
 
As with HSYNC’s, it is possible to generate several VSYNC’s during a frame, but the monitor will 
only be able to lock onto one VSYNC signal. 
 
On a CTM monitor, the image begins to be visible from the 34th line (which represents the second 
line of the 5th character of 8 lines from the start of the VSYNC). 

16.2 VSYNC-CRTC VERSUS VSYNC-GATE ARRAY 

16.2.1 VSYNC AREA DISPLAY 
 
When the GATE ARRAY receives the signal emitted by the CRTC (when C4==R7), it sets its 
counter V26 to 0. The black color will be displayed for 26 lines. However, the display stops 
during a period of 4 HSYNC’s during which the GATE ARRAY sends the synchronization signal to 
the monitor. The absence of display during this period is slightly different from the black color 
displayed, but can still be seen visually on full moon nights (and provided you have unicorn eyes). 
 
The GATE ARRAY reacts as soon as it receives the VSYNC signal from the CRTC. The colorization 
begins when C4 changes to the value of R7, one microsecond before the display of the character 
C0=0 (on C9=R7) because the characters are displayed with a delay of one microsecond. This 
characteristic remains true for CRTC’s 3 and 4, whereas it is not the case for the HSYNC signal, 
which is delayed. 
 
The VSYNC CRTC signal become active under different conditions, which affect when the GATE 
ARRAY receives the information. 
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If R7 is programmed with R7 before C4=R7: 

 CRTC 0 and 2: The display of the black color starts from the 5th pixel of the VMA word 
which precedes C4=R7. Note that on these CRTC’s, 8 pixels of BORDER are displayed 
instead of the 2nd byte of VMA. 

 CRTC 1: The display of the black color starts from the 6th pixel of the VMA word which 
precedes C4=R7. 

 CRTC 4: The display of the black color starts from the 2nd pixel of the VMA word which 
precedes C4=R7. 

 

 
 
If R7 is programmed with C4 when C4<>R7: 
The R7.JIT technique consists of updating R7 with the value of C4. 
It does not work on CRTC’s 3 and 4, whose VSYNC only starts on C0=0. 
 
On CRTC’s 0, 1 and 2 a VSYNC starts sooner or later depending on the instruction used: 

 CRTC 0: 
The display of the black color begins on the 5th pixelM2 of the VMA word of C0 for 
which R7=C4 (bit 3 of the 1st byte of the word) and this regardless of the instruction 
used (OUT (C), reg8 or OUTI). The display of the VSYNC and the activation of the 
CSYNC signal are delayed by 1 µsec because R7 is not modified fast enough to be 
considered immediately. 

 CRTC’s 1 and 2 : 
- If R7 becomes equal to C4 with OUT (C),reg8: The display of the black color begins 
on the 9th pixelM2 of the word pointed to by VMA which precedes the position of C0 on 
which R7=C4 (in other words bit 7 of the 2nd byte of the word pointed to by "C0-1"). 
- If R7 becomes equal to C4 via OUTI: The display of the black color begins on the 5th 
pixel M2 of the word pointed to by VMA which precedes the position of C0 on which 
R7=C4 (in other words bit 3 of the 1st byte of the word). 
 

 
 

R7.NJIT C0vs/C4 C0vs=0/C4=R7 C0vs=1 C0vs=2

C0ga/C4 C0ga=R0/C4=R7-1 C0ga=0 C0ga=1

CRTC 0 Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

CRTC 1 Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

CRTC 2 Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

CRTC 4 Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

R7.JIT C0vs C0vs=2 C0vs=3 C0vs=4

C0ga C0ga=1 C0ga=2 C0ga=3

CRTC 0 Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

CRTC 1 Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

CRTC 2 Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 3rd µs OUT (C),r8 (I/O R7=C4) 4th µs OUT(C),r8

R7.JIT C0vs C0vs=2 C0vs=3 C0vs=4

C0ga C0ga=1 C0ga=2 C0ga=3

CRTC 0 Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

CRTC 1 Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

CRTC 2 Pixel M2 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Z80a 5th µs OUTI (I/O R7=C4)
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When the 26th HSYNC ends, data display is restored under the following conditions: 

 On CRTC’s 0 and 1, the background display starts 1 pixelM2 (1/16 Mhz, 0.0625 µsec) 

after that of the end of HSYNC. 

 On CRTC’s 2, 3 & 4, the background display starts at the same time as the end of 

HSYNC. 

You can consult chapter 14.9, page 133 to observe the precise detail of the display during an end 
of HSYNC according to the CRTC and the current graphics mode. 
 
On CRTC’s 0, 3 and 4, if the number of lines of the VSYNC is programmed with 1 line in R3h, the 
GATE ARRAY will support the "display" for 26 lines. This is also true if the duration of the VSYNC 
produced by the CRTC is reduced to 2 µseconds. 
  
Note : 
It may not be a coincidence that the limit of the V26 counter is half the limit of the interrupt line 
counter of the GATE ARRAY. These counters are necessarily distinct but it is perhaps a saving on 
the flip-flops which define the limits for each counter within the circuit. The same question may 
arise for the duration of the monitor signal, which is 4 characters during an HSYNC (H06 between 
2 and 6), and 4 HSYNC during a VSYNC (V06 between 2 and 6). 
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16.2.2 MONITOR C-SYNC SIGNAL 
 
The synchro signal emitted by the GATE ARRAY is called "composite" because the 2 signals 
HSYNC and VSYNC generated by the CRTC (in green below) are used to generate the signal on a 
single output (in blue). The C-SYNC signal has a low (active) or high state, the alternation and 
duration of which allow the components of the monitor to separate them. This synchronization 
signal is present on pin 4 of the DIN6 video connector. 
 

   
 
To my knowledge, the CTM 640/644 (color screens) contain a Sanyo LA7830 (or Nec µPC1378H) 
component to manage the vertical deflection, and a Sanyo LA7800 to separate the horizontal and 
vertical synchronization signals. The GT 64/65 (monochrome screens) contain an LA1385 (or nec 
µPC1031H2) to manage the vertical deflection. 
 
The C-SYNC composite signal of the CPC is of the XNOR type. A XNOR B  A XOR NOT (B) 
The signal state depends on the HSYNC and VSYNC transitions processed by the GATE ARRAY. 
 
Unlike an AND-type C-SYNC signal, a C-SYNC XNOR allows the HSYNC signal to coexist during the 
VSYNC period. The signal state for the HSYNC information in this situation is then reversed. 
 
The HSYNC signal from the CRTC is low (0) when inactive and high (1) when active. 
The VSYNC signal from the CRTC is low (0) when inactive and high (1) when active. 
The C-SYNC signal produced by the GATE ARRAY is active when it is low (0) 
 
GATE ARRAY manages several counters and states in order to correctly process the C-SYNC 
signal. 

 A H06 counter counts the number of characters processed during an HSYNC. The 
GATE ARRAY cannot indeed know C3l from the CRTC. 

 A VSYNC_GA state becomes true when the VSYNC CRTC signal becomes true (the 
CRTC VSYNC signal state is no longer used thereafter, except for CRTC’s 3 and 4). 

 A V26 counter counts the number of HSYNCs as long as VSYNC_GA is true. 
 The SIG_GA_HSYNC and SIG_GA_VSYNC states are used to generate CSYNC. Like 

the CRTC's HSYNCs and VSYNCs, they are low (0) when inactive. 
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We can define C-SYNC as follows: C-SYNC=SIG_HSYNC XNOR SIG_VSYNC 
 
For clarity, I distinguish the horizontal and vertical nature of the C-SYNC signal, respectively with 
the terminologies C-HSYNC and C-VSYNC. 
  
Counter V26 is incremented by the GATE ARRAY when the CRTC signals an end of HSYNC. 
The GATE ARRAY activates the CSYNC signal when the counter V26 reaches 2. It 
deactivates this signal when V26 reaches 6. 
 
On CRTC 0, if the number of VSYNC lines is programmed via R3h=1, the GATE ARRAY 
autonomously manages the sending of the synchronization signal to the monitor while the VSYNC 
signal from the CRTC has become inactive. It can be assumed that CRTC’s 1 and 2 do the same 
thing, even if the VSYNC signal of these CRTC’s remains active for 16 HSYNCs. 
 
On CRTCs 3 and 4, the VSYNC signal from the CRTC must be active for the synchronization signal 
to be sent by the ASIC to the monitor. If R3h is programmed with 2, the VSYNC signal from the 
CRTC is maintained on lines C9=0 and C9=1. The C-VSYNC signal starts at the end of the HSYNC-
CRTC of line C9=1 and then stops when C0 returns to 0. 
 
For example, if R3h=2, R3l=13, R2=40 and R0=63, the signal for the monitor is emitted from 53 
(40+13) and stops 11 µsec later (63+1-53) when C0 goes back to 0. Depending on the accuracy 
of the monitor's V-Hold potentiometer setting, this value may be sufficient to synchronize the 
image vertically. If R3l is enlarged, the signal size decreases. The screen scrolls and can no longer 
synchronize the image. 
 
Programming R3h>2 on CRTC’s 3 and 4 increases the duration of the signal by R0 µsec (except 
for the 4th line where the signal stops when C0 reaches R2+R3l. 
 

 

C9/C0 : 0 1 ………………………………………………………………………………….…………………….R2 ………………R0
0 VSYNC Black Color V26 : 1
1 VSYNC Black Color 2
2 VSYNC Monitor 3
3 VSYNC Monitor 4
4 VSYNC Monitor 5
5 VSYNC Monitor 6
6 VSYNC Black Color 7
7 VSYNC Black Color 8
0 VSYNC Black Color 9
1 VSYNC Black Color 10
2 VSYNC Black Color 11
3 VSYNC Black Color 12
4 VSYNC Black Color 13
5 VSYNC Black Color 14
6 VSYNC Black Color 15
7 VSYNC Black Color 16
0 VSYNC Black Color 17
1 VSYNC Black Color 18
2 VSYNC Black Color 19
3 VSYNC Black Color 20
4 VSYNC Black Color 21
5 VSYNC Black Color 22
6 VSYNC Black Color 23
7 VSYNC Black Color 24
0 VSYNC Black Color 25
1 VSYNC Black Color 26
2



V1.4 – 01.2023 – Page 154 / 281 
 

The management of the incrementation of V26 at the end of the HSYNC-CRTC causes a noticeable 
side effect. Indeed, when C4 reaches R7, on line C9=0, C0=0, the CRTC activates its signal 
VSYNC, and the GATE ARRAY resets counter V26 to 0. But if the size of the HSYNC defined via R3l 
overflows on the line C4=R7, V26 will change to 1 (end of HSYNC) when it has just changed to 0 
(C4=R7). 
 
In this situation, the GATE ARRAY will activate C-VSYNC at the end of the next HSYNC, which will 
occur R0+1 µsec later, at the start of C9=1. C-VSYNC occurs one line earlier, compared to a 
frame where HSYNC does not overflow onto the new line. And the screen will therefore be 
displayed one line lower. 
 
For example, if R2=50 (51 on CRTC 0, 1 and 2, whose HSYNC is not delayed) and R3l=14, then 
the image goes down one line. If R3l is programmed with the value 13, then V26 will not be 
incremented when C4=R7, and the VSYNC signal will be sent from the end of the HSYNC which 
will start on C9=1. The image will then move up one line. 
 
The GATE ARRAY clocks the CRTC via a clock signal CLK whose period is 5 x 0.0625 µsec high and 
11 x 0.0625 µsec low. When the CRTC signals a start or an end of HSYNC, there are delays of 1 or 
2 pixel-M2 (1 pixel-M2=0.0625 µsec) before and after this clock signal, which depend on the type 
of CRTC (for the management of the HSYNC signal) and a level of tolerance specific to the circuit. 
 
These shifts between the active edges of the signals lead to a phase shift between the start of the 
HSYNC signal received by the GATE ARRAY and the start of the count to activate the C-HSYNC 
signal after 2 µsec. A phase shift also exists at the end of the HSYNC signal which triggers the end 
of the C-HSYNC signal. 
 
The C-HSYNC signal becomes active (low state) 1 or 2 Pixel-M2 before the end of the 2 µs if 
R3l>=2. 
The C-HSYNC signal becomes inactive (high state) in 2 situations: 

 1 or 2 Pixel-M2 after the end of the HSYNC signal 

 If the duration of C-HSYNC has reached 4 µsec 
 
The C-VSYNC signal becomes active 1 Pixel-M2 after the end of the 2nd HSYNC. 
The C-VSYNC signal becomes inactive 1 Pixel-M2 after the end of the 6th HSYNC. 
 
On the diagram below, the interval between 2 dotted lines is 1/16 Mhz (0.0625 µsec). It shows 
the 2nd HSYNC signal (programmed with R3l=2) during a VSYNC. We can observe the activation 
of the C-HSYNC signal for 0.0625 µsec (low state) followed by its deactivation (high state) for 
0.0625 µsec before being activated again to generate the C-VSYNC signal, which will last until the 
end of HSYNC Number 6. 
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16.2.3 C-SYNC ALGORITHM 
 
The following algorithm represents the simplified logic of C-SYNC signal processing. 
 
If VSYNC-CRTC Transition OFF    ON 
 V26=0     ; HSYNC CRTC counter initialized 
 VSYNC_GA=true    ; GA VSYNC support 
 CBLACK_VSYNC=true   ; Black color enabled for VSYNC 
 
If HSYNC-CRTC Transition OFF    ON 
 H06=0     ; NOP CRTC counter initialized 
 CBLACK_HSYNC=true   ; Black color enabled for HSYNC 
 
If HSYNC-CRTC Transition ON    OFF 
 SIG_GA_HSYNC=LOW   ; Hsync GA signal inactive 
 CBLACK_HSYNC=false   ; Disable HSYNC black color 
 If VYSNC_GA==true   ; GA VSYNC management if active 
  V26++    ; HSYNC counter incremented 
  If V26==2: SIG_GA_VSYNC=HIGH (and CRTC-VSYNC (on CRTC 3/4)) 
  If V26==6: SIG_GA_VSYNC=LOW 
  If V26==26: CBLACK_VSYNC=false ; Disable black color VSYNC 
  VSYNC_GA=false    ; VSYNC GA completed 
 
If CRTC Transition Character 
 H06++     ; NOP counter incremented 
 If H06==2: SIG_GA_HSYNC=HIGH 
 If H06==6: SIG_GA_HSYNC=LOW 
 
BLACKCOLOR=CBLACK_HSYNC or CBLACK_VSYNC  
CSYNC=SIG_GA_HSYNC XNOR SIG_GA_VSYNC 
 

Below, the measurement on the GATE ARRAY of the CRTC VSYNC and HSYNC signals which arrive 
there and the CSYNC signal which is generated between HSYNC N°2 and HSYNC N°6. 
 

 

16.2.4 TOLERANCES 
 
According to measurements made on several CTMs, the duration of the signal emitted for the 
monitor must be greater than 11-12 µseconds. Below this value, the monitor can no longer 
"anchor" the image, regardless of the adjustment made with the potentiometer on the back of the 
monitor. 
 
Beyond 12 µseconds, the image stability depends mainly on the monitor setting. 
Depending on the setting, per period of 6 µseconds, the stability is reduced. We can thus have 
slight jolts of the image over a period of 6 µsec, then a period of clear jumps over the following 
period, and finally a permanent stall. 
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16.2.5 CRTC AND GATE ARRAY INTERACTIONS 
 
If the VSYNC signal from the CRTC becomes inactive, the GATE ARRAY continues to manage the 
C-VSYNC on its side. CRTC’s 3, 4 still need the active VSYNC signal from the CRTC to continue 
sending the C-VSYNC signal to the monitor (the designers of the "CRTC ASIC" reproduced the 
logic used for the H-CSYNC of CRTC’s 0, 1 and 2). 
 
The maximum programmable number of lines of a VSYNC generated by the CRTC is less than the 
26 lines of the VSYNC of the GATE ARRAY. 
 
If a VSYNC CRTC is activated again while the GATE ARRAY VSYNC is in progress, then the GATE 
ARRAY VSYNC line counter is reset to 0. It is incremented each time the GATE ARRAY receives the 
HSYNC end signal of the CRTC. 
 
In the following example, R3h=0 (16 lines). A second VSYNC CRTC is triggered from 
C4=12/C9=4, by positioning R7=C4 before the HSYNC. This example works on CRTC’s 0, 1 and 2, 
because they can activate a VSYNC as long as C4=R7, whatever the value of C9. 
 

 

Update R7 C4 C9 CRTC CNT GATE ARRAY COUNTER MONITOR
10 10 0 1 1 Black Color

10 1 2 2 VSYNC Monitor
10 2 3 3 VSYNC Monitor
10 3 4 4 VSYNC Monitor
10 4 5 5 VSYNC Monitor
10 5 6 6 Black Color
10 6 7 7 Black Color
10 7 8 8 Black Color
11 0 9 9 Black Color
11 1 10 10 Black Color
11 2 11 11 Black Color
11 3 12 12 Black Color
11 4 13 13 Black Color
11 5 14 14 Black Color
11 6 15 15 Black Color
11 7 16 16 Black Color
12 0 17 Black Color
12 1 18 Black Color
12 2 19 Black Color
12 3 20 Black Color

12 12 4 1 21 1 Black Color
12 5 2 22 2 VSYNC Monitor
12 6 3 23 3 VSYNC Monitor
12 7 4 24 4 VSYNC Monitor
13 0 5 25 5 VSYNC Monitor
13 1 6 26 6 Black Color
13 2 7 7 Black Color
13 3 8 8 Black Color
13 4 9 9 Black Color
13 5 10 10 Black Color
13 6 11 11 Black Color
13 7 12 12 Black Color
14 0 13 13 Black Color
14 1 14 14 Black Color
14 2 15 15 Black Color
14 3 16 16 Black Color
14 4 17 Black Color
14 5 18 Black Color
14 6 19 Black Color
14 7 20 Black Color
15 0 21 Black Color
15 1 22 Black Color
15 2 23 Black Color
15 3 24 Black Color
15 4 25 Black Color
15 5 26 Black Color
15 6 Current Ink
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16.3 VSYNC PROTECTION 
 
To prevent infinite VSYNC, CRTC designers have provided two mechanisms. 
 
The first consists in ignoring the comparison of C4 with R7 when R7 is modified during VSYNC. It 
is not possible to trigger or inhibit a VSYNC during a VSYNC. Thus, modifying the value of R7 with 
a value of C4 reached during the VSYNC does not cause a new VSYNC. Modifying R7 with a C4 
value different from the initial C4 value does not interrupt the current VSYNC. 
 
The second protection mechanism is to check if the equality between C4 and R7 has changed. 
This condition changes if C4 increments or if R7 is changed. For example, if R7=0, then a VSYNC 
occurs when C4=0. If R4 is 0, then C4 remains at 0 each time C9 goes back to 0. C4 is therefore 0 
during the VSYNC but also after the end of the VSYNC. In this context, there is no more VSYNC. If 
R7 is modified and C4 is different from R7 when C9 goes back to 0, this allows the VSYNC 
blocking mechanism to be lifted. 
 
This second mechanism was not renewed by the designers of CRTC’s 3 and 4 for AMSTRAD. Even 
if the equality C4=R7 has not changed (C4=R7=0 for example), a new VSYNC starts immediately 
as soon as the current VSYNC ends, which causes an infinite VSYNC. In this particular case, the 
ASIC no longer generates the C-VSYNC for the monitor. (Ouch!). 
 
For all CRTC’s, if the comparison between C4 and R7 changes during VSYNC, the second blocking 
mechanism is overridden. The protection of VSYNC is then ensured only by the first mechanism 
described above. Thus, if R7=0 and R4=1, a VSYNC occurs when C4=0. 
 
If R3h=0 and R9=7, then C4 will change to 1 on the 9th line, and return to 0 on the 17th line. 
The CRTC's VSYNC will then start again immediately, creating an infinite VSYNC. In this situation, 
the GATE ARRAY (CRTC’s 0, 1, 2) or ASIC (CRTC’s 3, 4) will trigger a new VSYNC if it has finished 
processing the previous one. 
 
The GATE ARRAY VSYNC is considered complete when the 26th row has been processed. 
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16.4 CONDITIONS TO CONSIDER 
 
For all CRTCs, the update of R7 with C4 can take place up to the last µsecond preceding C4=R7. 
In other words, if R7 is modified with the value of C4 on line C4-1, C9=R9 and C0=R0, then the 
VSYNC will be active as soon as C4=R7. 

16.4.1 CRTC 0 
 
VSYNC CRTC starts when C4=R7. 
 
If C4 becomes equal to R7 when C0vs reaches 0, then the VSYNC starts on C0vs=0. 

16.4.1.1  R7 UPDATE 
 
If R7 is modified with the value of C4, then the VSYNC is triggered immediately if it was not 
already in progress, except if this modification occurs when C0vs=0 or C0vs=1. 
 
If the modification of R7 with the value of C4 took place when C0vs<2, we are in a BLOCKED 
VSYNC. This means that the blocking mechanism described in the previous chapter is active, but 
without the VSYNC having occurred.  
 
The VSYNC can no longer occur on the value of C4=R7 until an unblocking condition is produced. 
The BLOCKED VSYNC of CRTC 0 should not be confused with the GHOST VSYNC of CRTC 2 
(see following chapters). With CRTC 0, only the second blocking mechanism is activated. A VSYNC 
is possible as soon as the release conditions are true. 
 
When R7=C4 with C0vs>1, the VSYNC is "triggered" during the line. 
In this case, the row counter starts with 0. 
 
This VSYNC line counter is initialized at the start of the next line when C0=0. 
All the lines for which C4=R7 are affected by this mid-line VSYNC start. 
The total duration of the VSYNC is increased by the number of µsec corresponding to the 
calculation R0 - C0vs (in relation to the exact moment when R7 was updated). 
So if a VSYNC is triggered during line number 1, then the VSYNC ends at the end of line 17. 
 
Examples : 

 If R7 is modified on C0vs=#36, then the next read of the PPI-PORT B (read 6 µsec later 
on C0vs=#3C) returns an active status of the VSYNC. 

 If R7 is modified on C0vs=#00, then the next read of the PPI-PORT B (read 6 µsec later 
on C0vs=#06) returns an inactive status of the VSYNC  

16.4.1.2 R0 UPDATE 
 
The counter C0 needs to reach the value 2 on the line preceding that where C4=R7 for a VSYNC 
to be considered. Thus, if the length of the line preceding the VSYNC condition is limited to 0 or 1 
µsec (R0=0/1), the latter will not take place and the VSYNC will be blocked for the condition 
C4=R7, as if it had had place. A new VSYNC is then only possible if an unblocking condition is 
satisfied (C4 or R7 update). 
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If R0 (which was greater than 2) becomes equal to 0 on C0=0 of the first line C4=R7, then the 
VSYNC starts on C0=0, but like all the other counters on this CRTC, the VSYNC line counter C3h is 
frozen, and the VSYNC is not deactivated if R3h was worth 1 (because C3h can no longer reach 
R3h). 
 
If R0 (which was greater than 2) becomes equal to 1 on C0=0 of the first line when C4=R7, then 
the VSYNC starts on C0=0, but the counter can be incremented when C0 returns from 1 to 0. If 
R3h was 1, then VSYNC stops. It will have lasted 2 µsec in total. This is nevertheless sufficient to 
trigger the management of the VSYNC by the GATE ARRAY. 

16.4.2 CRTC 1 
 
VSYNC starts when C4=R7. 
 
If R7 is modified with the value of C4, then VSYNC is triggered immediately. 
If R7 is modified when C0vs=#36, for example, then the next reading of the PPI (at the earliest 5 
μsec after, so on C0=#3B) returns an active status of the VSYNC. 
 
The "triggered" activation of the VSYNC counts the line as if the VSYNC had started when C0=0. 
 
As a result, the total VSYNC duration is reduced by the number of μsec corresponding to the value 
of C0+1 from the moment R7 was updated. 
 
If a VSYNC is triggered during line number 1, then the VSYNC ends at the end of line 16 

16.4.3 CRTC 2 
 
VSYNC is considered on all values of C0 and C9 when C4=R7.  
If the VSYNC condition occurs during a HSYNC from C0=R2 to C0=R2+R3 (1 µsec longer than 
the visual size of the HSYNC) then the CRTC generates a GHOST VSYNC. 
 
If R7 is modified with the value of C4, then the VSYNC is triggered immediately, except during the 
HSYNC period (C0=R2 to C0=R2+R3), which triggers the GHOST VSYNC. 
 
A GHOST VSYNC means that the CRTC counts the lines as if a VSYNC were taking place by 
preventing a new VSYNC from occurring, but without the VSYNC pin being enabled. 
 
The "triggered" activation of the VSYNC counts the line as if the VSYNC had started in C0=0. 
 
As a result, the total VSYNC duration is reduced by the number of μsec corresponding to the value 
of C0+1 from the moment when R7 was updated 
 
If a VSYNC is triggered during line number 1, then the VSYNC ends at the end of line 16. 
 
To get around the problem of no VSYNC on this CRTC, just avoid creating the condition of a 
GHOST VSYNC.  
 
It is possible by positioning R7 far into the cosmos (e.g. 127) and then updating R7 with C4 when 
C0 is no longer present in the HSYNC period of the line considered.  
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It is also possible to reduce R3 at the last moment, but it is more tricky. In this case, it should not 
be forgotten that if the HSYNC overflows on C0=0, then C4 overflows on the last line of the frame 
and the BORDER remains activated. 

16.4.4 CRTC 3, 4 
 
VSYNC starts when C4=R7 and C9=C0=0. 
 
If R7 is modified with the value of C4 while C0>0, it will not trigger VSYNC. 
 
There is no VSYNC reentrancy protection mechanism on these circuits. 
If the condition C4=R7 and C9=C0=0 has not changed and is renewed in the absence of an active 
VSYNC, then a VSYNC starts again. 
 
Finally, it is necessary that the VSYNC CRTC lasts at least 3 lines for the C-VSYNC monitor signal 
to be generated. 
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16.5 DELAYED VSYNC 

16.5.1 CRTC 0 
 
VSYNC can be delayed when one of the "Interlace" modes is active from C4==R7. 

 A delay of half a line when the parity of a frame is even. VSYNC then occurs on C4==R7 
and C0=R0/2. 

 A delay of one complete line in the particular case where R9 is odd in IVM mode (R8=3) 
on an odd frame and an odd C4. See chapter 19.5.2 

16.5.2 CRTC 1 
 
VSYNC can be delayed when one of the "Interlace" modes is active from C4==R7. 

 A delay of half a line when the parity of a frame is even. VSYNC then occurs on C4==R7 
and C0=R0/2. 

 
Unlike CRTC’s 0, 3 and 4, this CRTC does not correctly synchronize a frame in IVM mode when R7 
is odd on an image composed of characters with an odd number of lines (R9 even). 

16.5.3 CRTC 2 
 
VSYNC can be delayed when one of the "Interlace" modes is active from C4==R7. 

 A delay of half a line when the parity of a frame is even. VSYNC then occurs on C4==R7 
and C0=R0/2 

16.5.4 CRTC’ s 3 & 4 
 
VSYNC can be delayed when one of the "Interlace" modes is active from C4==R7. 

 A delay of half a line when the parity of a frame is even. VSYNC then occurs on C4==R7 

and C0=R0/2. 

 A delay of one complete line in the particular case where R9 is odd in IVM mode (R8=3) 

on an odd frame and an odd C4. See chapter 19.5.5  
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16.6 LIMITLESS VSYNC ! 
 
In a system without a GATE ARRAY, if the VSYNC signal from a CRTC was sent directly to the 
monitor, the monitor would be able to start its return phase to the top of the monitor to satisfy 
the constraints of the interlaced mode. 
 
As part of an image composed of 2 frames, the CRTC in Interlace mode generates an odd and 
even frame of 312 lines each, separated by a line on which the VSYNC will be generated in the 
middle of the line (R0/2). See Chapter 19.3, page 187. 
 
Unfortunately (or fortunately, we are going to see it) it is the GATE ARRAY which filters the 
HSYNC and VSYNC signals from the CRTC and which generates a mixed signal HSYNC+VSYNC 
towards the monitor as soon as it arrives on the 2nd HSYNC which follows the VSYNC generated 
by the CRTC. It thus short-circuits the “native” timing of the CRTC’s for “Interlace” operation. 
 
It is still possible to force the GATE ARRAY to send the C-VSYNC signal to the monitor at the right 
time if you want to obtain an "interlace" image. It suffices for this to place the 2nd HSYNC which 
occurs after the VSYNC CRTC at half the distance from the line compared to that which usually 
takes place (i.e. a delay of R0/2 µsec). However, we must not forget to compensate the deficit 
thus created for the CTM. It is therefore possible to display an “interlace” image quite simply. 
 
The beam rises diagonally to reach the horizontal position left at the bottom of the screen. 
Depending on the horizontal position of the beam when the request is made, the latter zigzags to 
reach the horizontal position it has just left. 
The following diagrams show the different situations that may arise. 
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The later the beam starts, the higher the beam rises. 
 
Thus, if the beam starts to rise from the middle of a line, it will rise: 

 Higher by ½ pixel than if the beam had gone up from position C0=0. 
 Lower by ½ pixel than if the beam had risen from position C0=63. 

 
One idea (not that far-fetched, Cheshirecat would say) is to trigger the 2nd HSYNC-VSYNC on 
each of the 64 frame positions to achieve 1/64th pixel positioning accuracy. 
 

 
 
This diagram shows the positioning of the beam at the vertical level of a pixel when it has arrived 
at the top of the screen, starting from a VSYNC activated on the different positions of C0 of a line. 
 



V1.4 – 01.2023 – Page 164 / 281 
 

The CTM is accurate enough to handle that. CPC magic! Boo to the C64 and Amiga! 
 
The human eye, however, is not able to see movement at this level of precision. 
Thus, the CPC on a CTM monitor can manage fluid vertical scrolling at 1/64th of a pixel (and all 
lower variations). 
 
This is demonstrated in SHAKER from version 2.1. 
 
It should be possible to further increase this precision to 1/128th pixel, with the help of another 
technique described in this document... 

16.7 THE RIGHT MOMENT... 
 
If R7 is updated without "precautions", a new VSYNC may occur during or after the current frame. 
In this situation, the monitor must handle multiple VSYNC or the absence of VSYNC after the 
update, and this results in frame breaks.  
 
The monitor is simply trying to set its image to the new position of C4=R7.  This operation can 
take place faster or slower depending on the "v-hold" setting of the monitor. 
 
It is possible to avoid this synchronization stall of the monitor by acting so that C4 returns to the 
new value of R7 in the same place as the old value of C4=R7. This requires modifying R4 so that 
it goes back to 0 earlier if the new C4=R7 to be reached is higher than the old one, or conversely 
to enlarge R4 so that C4 goes back to 0 later if the new C4=R7 to be reached is lower than the 
old one. Just imagine that it is the counters which end up where they should be. 
 
This little gymnastics of repositioning the counters prevents the monitor from losing the VSYNC, 
which can be annoying for a program that cannot suffer this type of visual artifact. 
 
Otherwise, if your code has time, it is always possible to hide this stall by acting on R1 and / or 
R6, or even by putting all the black inks a "certain time", but there are some perverts who titillate 
the V-Hold of their monitor in order to track down the deviant’s insubordinate of the diktat of 
fundamentalist purists. 
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17 DISPLAY : REGISTER R1 

17.1  GENERAL 
 
The function of this register is to define the number of horizontal characters displayed on a line. 
Its value is expressed by the number of CRTC characters (as a reminder, each CRTC character 
occupies 2 bytes in RAM). 
 
It also plays an important role in memorizing the current video pointer. 
 
In general, the CRTC generates R0+1 characters on a line, of which R1 characters will be 
displayed. When R1 Characters are displayed (DISPLAY ENABLE ON) then the display is inhibited, 
and the "Border" is displayed on CPC (DISPLAY ENABLE OFF) via the GATE ARRAY. 
 
Note that the DISPLAY ENABLE Pins have various names, and we can find it under other exotic 
names such as DISPTMG or DE, depending on the different CRTC documentation. 
 
To display all of the characters that the CRTC can generate for a line, R1 should in principle be 
R0+1. Indeed, the DISPLAY ENABLE “Flag” is set to OFF to generate border when C0=R1. 
 
However, C0 can never exceed R0. 
To display all programmed characters with R0, it is possible to prevent C0 from reaching R1, 
either by positioning R1> R0, or by changing the value of R1 during the line. 
 
In this situation, a problem arises because the equality between C0 and R1 is used to update the 
video pointer when C9=R9 (last line of a "character"). 
 
This defect in updating therefore causes a repetition of the character lines, under conditions 
specific to each CRTC. 
 
Note : 
This problem, caused by the dynamic counter management is a defect because it does not allow 
the video counter to reach 128 bytes for 1 line (64 µsec), which can lead some unfortunate people 
to use 65 µsec frames by line by programming R0 at 64 with a single horizontal synchronization 
position for these 65 µSec lines ... 
This allows for the addition of a hiss to the music played in the demos and to verify that the 
monitor is poorly adjusted. 
Without artifice this does not allow the possibility of getting a video pointer where the more 
significant address byte does not vary during the display of a line. This "trick" saves CPU when it 
comes to displaying data, because you just increment an 8-bit register instead of 16-bit for the 
video pointer. Which is why, unfortunately, so many frames are formatted with lines 64 bytes 
wide in "minimized frame", 16 less than the standard width. 
 
When C0 goes back to 0 (following a condition C0=R0) then the display is authorized (DISPLAY 
ENABLE ON). Note that if C0 returns to 0 because it reached 255 having overflowed, this does not 
authorize the display (at least on the CRTC 0 but is yet to be verified on the other CRTC’s). 
Note also that this condition is not managed by the CRTC 2 during the HSYNC. 
 
If R1 is zeroed then no more characters are displayed, regardless of the CRTC of a CPC. 
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The border begins on position C0=R1 (considering, for CRTC 0, that the SKEW DISP function is 
not used). 
 
Note : 
This is not the case on the BBC with the Hitachi HD6845SP (type 0) either with Samsung 
KS68C45S or a VLSI VL68C45S23PC. (But why am I talking about this in a document dedicated to 
the CPC, me?). (Why not the PD7220 NEC as long as I'm here?) 
 
In the diagrams below, and in some introductory words, I refer to two memory pointers in the 
CRTC, which I named VMA and VMA'. 
 
When the CRTC displays characters, it always uses VMA pointer. 
 
This pointer is incremented each time a character is treated by the CRTC, whether displayed or 
not. In some "pre-release" versions of the CRTC, this pointer was not managed during the VSYNC, 
but that does not concern the CRTC’s of the CPCs to my knowledge. 
 
When C0=R1 and C9=R9, then the VMA current pointer is transferred to the VMA’ pointer. 
 
When C0=0, at the start of the line, the VMA’ line pointer is transferred to the VMA current 
pointer, except for the first character (C4=0). 
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17.2 DISPLAYS ACCORDING TO R1 

17.2.1 DISPLAY WITH R1 <= R0 
 
The following diagram describes R1 management in "standard" programming of the CRTC on a CPC which has just been switched on with a 
standard ROM BASIC. 
Initial data: CRTC-R0=63 / CRTC-R1=40 / CRTC-R9=7 / CRTC-R12=0 / CRTC-R13=0 
 

C0=0 C0=R1 & C9=R9 VRAM-C9-Bit 0..2 C0: 0 1 2 3 … 37 38 39 40 41 42 43 44 45 … 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 0 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 1 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 2 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 3 0 1 2 3 … 37 38 39 DISP-OFF BORDER 

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 4 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 5 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 6 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA'=CRTC-VMA CRTC-VMA C9 : 7 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 0 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 1 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 2 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 3 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 4 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 5 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 6 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA'=CRTC-VMA CRTC-VMA C9 : 7 40 41 42 43 … 77 78 79 DISP-OFF
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17.2.2 DISPLAY WITH R1 > R0 
 
The following diagram describes the display when R1 is programmed with a value greater than 63. 
Initial data: CRTC-R0=63 / CRTC-R1=64 / CRTC-R9=7 / CRTC-R12=0 / CRTC-R13=0 

R0 R1

C0=0 C0=R1 & C9=R9 VRAM-C9-Bit 0..2 C0: 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 0 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 1 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 2 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 3 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 4 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 5 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 6 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 7 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 0 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 1 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 2 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 3 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 4 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 5 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 6 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9: 7 0 1 2 3 … 53 54 55 56 57 58 59 60 61 62 63  
If R1 > R0, then C0 is never equal to R1 (when C9=R9), and VMA’ is therefore not updated with VMA. 
 
This causes a character repetition because the current address is not updated during the change of one “line-character” (when C9=R9). 
 
Note 1 : 
Only the first 10 bits are not updated in this context. 
The bits that determine the block number (Character line) (C9 or C5) continue to "participate" in the address. See Chapter 20, page 229. 
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Note 2 : 
Insofar as the conditions allow the address update, modifying R12/R13 allows for this repetition to be avoided. In practice, this allows you to put 
the "lines" when C0 returns to 0 several times during a "line". However, CRTC’s 0 and 2 generate a border byte, knowing that CRTC 0 can still 
prevent the generation of this byte by consuming CPU. See Chapter 19.2, page 182. 
 
Note 3 : 
According to the CRTC, the initial update of CRTC-VMA'/CRTC-VMA via R12/R13 is not the same. 
See Chapter 20.3, page 230 . 

 

17.3  DYNAMIC R1 UPDATE 
 
The condition C0=R1 is considered immediately on a line. 
It can occur several times on the same line if R1 is reprogrammed. 
 
When the first condition C0=R1 is true, there is no longer any display of characters, and the BORDER is displayed. 
 
However, even if only the BORDER is displayed, the VMA pointer continues to count (the CRTC being only a large field of flowering 
counters,...). 
 
If R1 is updated again during the line to meet the condition C0=R1 when C9=R9 then this will cause an update of the video pointer. 
 
In other words, the modification of R1 during the BORDER R1 display allows for the video pointer to be updated without the data being 
displayed. 
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The diagrams below show these behaviours when C4 > 0. 
 
C0=0 C0=R1 & C9=R9 VRAM-C9-Bit 0..2 UpdC0: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 0 R1=26 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 1 R1=25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 2 R1=24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 3 R1=23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 4 R1=22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 5 R1=21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 6 R1=20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA'=CRTC-VMA CRTC-VMA C9 : 7 R1=19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 0 R1=18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 1 R1=17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 2 R1=16 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 3 R1=15 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 4 R1=14 19 20 21 22 23 24 25 26 27 28 29 30 31 32 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 5 R1=13 19 20 21 22 23 24 25 26 27 28 29 30 31 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 6 R1=12 19 20 21 22 23 24 25 26 27 28 29 30 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA'=CRTC-VMA CRTC-VMA C9 : 7 R1=11 19 20 21 22 23 24 25 26 27 28 29 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 0 R1=12 30 31 32 33 34 35 36 37 38 39 40 41 DISP-OFF

 
R0

C0=0 C0=R1 & C9=R9 VRAM-C9-Bit 0..2 UpdC0: 0 1 2 3 … 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 0 R1=64 0 1 2 3 … 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 1 0 1 2 3 … 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 2 0 1 2 3 … 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 3 0 1 2 3 … 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 4 0 1 2 3 … 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 5 0 1 2 3 … 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 6 0 1 2 3 … 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA'=CRTC-VMA CRTC-VMA C9 : 7 R1=40 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 0 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 1 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 2 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 3 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 4 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 5 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 6 40 41 42 43 … 77 78 79 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA'=CRTC-VMA CRTC-VMA C9 : 7 40 41 42 43 … 77 78 79 DISP-OFF

 
  



V1.4 – 01.2023 – Page 171 / 281 
 

R1 R0

C0=0 C0=R1 & C9=R9 VRAM-C9-Bit 0..2 UpdC0: 0 1 2 3 … 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 0 R1=40 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 1 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 2 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 3 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 4 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 5 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 6 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 7 R1=64 0 1 2 3 … 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 0 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 1 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 2 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 3 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 4 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 5 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 6 0 1 2 3 … 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA'=CRTC-VMA CRTC-VMA C9 : 7 0 1 2 3 … 37 38 39 DISP-OFF

R1 R0

C0=0 C0=R1 & C9=R9 VRAM-C9-Bit 0..2 UpdC0: 0 1 2 … 32 33 34 35 36 37 38 39 40 41 42 43 44 45 … 51 52 53 54 55 56 57 58 59 60 61 62 63

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 0 R1=40 0 1 2 … 32 33 34 35 36 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 1 0 1 2 … 32 33 34 35 36 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 2 0 1 2 … 32 33 34 35 36 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 3 0 1 2 … 32 33 34 35 36 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 4 0 1 2 … 32 33 34 35 36 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 5 0 1 2 … 32 33 34 35 36 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 6 0 1 2 … 32 33 34 35 36 37 38 39 DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA'=CRTC-VMA CRTC-VMA C9 : 7 0 1 2 … 32 33 34 35 36 37 38 39 DISP-OFF OUT R1,0

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 0 DISP-OFF CRTC-VMA +++++ OUT R1,40 CRTC-VMA +++++ OUT R1,0

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 1 DISP-OFF CRTC-VMA +++++ OUT R1,40 CRTC-VMA +++++ OUT R1,0

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 2 DISP-OFF CRTC-VMA +++++ OUT R1,40 CRTC-VMA +++++ OUT R1,0

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 3 DISP-OFF CRTC-VMA +++++ OUT R1,40 CRTC-VMA +++++ OUT R1,0

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 4 DISP-OFF CRTC-VMA +++++ OUT R1,40 CRTC-VMA +++++ OUT R1,0

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 5 DISP-OFF CRTC-VMA +++++ OUT R1,40 CRTC-VMA +++++ OUT R1,0

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 6 DISP-OFF CRTC-VMA +++++ OUT R1,40 CRTC-VMA +++++ OUT R1,0

CRTC-VMA=CRTC-VMA' CRTC-VMA'=CRTC-VMA CRTC-VMA C9 : 7 DISP-OFF CRTC-VMA +++++ OUT R1,40 CRTC-VMA +++++

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 0 80 81 82 … 112 113 114 ## ## ## ## ## DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 1 80 81 82 … 112 113 114 ## ## ## ## ## DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 2 80 81 82 … 112 113 114 ## ## ## ## ## DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 3 80 81 82 … 112 113 114 ## ## ## ## ## DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 4 80 81 82 … 112 113 114 ## ## ## ## ## DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 5 80 81 82 … 112 113 114 ## ## ## ## ## DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA C9 : 6 80 81 82 … 112 113 114 ## ## ## ## ## DISP-OFF

CRTC-VMA=CRTC-VMA' CRTC-VMA'=CRTC-VMA CRTC-VMA C9 : 7 80 81 82 … 112 113 114 ## ## ## ## ## DISP-OFF
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17.4  VMA’/VMA WHEN C4=0 
 
There are differences between CRTC’s for the assignment of the video pointer with the values 
programmed in R12 and/or R13 when C4=0 and C0=0. 

17.4.1 CRTC 0, 3, 4 
The first line character begins with the address defined by R12/R13, whatever the value of R1. 
On the first line of the first character of a "frame" (C4=C9=C0=0), the VMA’ pointer is 
updated using the content of R12/R13. 
This update is followed by the VMA pointer update with VMA'. 
 
If R1>R0, the VMA’ pointer is no longer updated, and the lines are repeated. 
 
In this circumstance, when a new frame begins, VMA' is updated and all the lines displayed 
become identical and equal to pointer R12/R13. 

17.4.2 CRTC 1 
The first line character begins with the address defined by R12/R13, whatever the value of R1. 
When you are on the first character of a "frame" (C4=C0=0), the VMA pointer (and not VMA’ as 
on CRTC 0) is updated using the content of R12/R13. 
 
Note: This update particularity allows for the modification of the offset via R12 and/or R13 on 
each line (C9 from 0 to R9) of a character while C4=0. 
 
This VMA update, however, has a consequence when R1> R0 throughout the frame. 
 
Indeed, the condition C0 = R1 no longer occurs and the VMA’ pointer is no longer updated. 
VMA’ is "frozen" on the last known pointer when C0 reached R1 when C9=R9. 
When C9 = 0, the VMA pointer is reloaded with VMA' when C4> 0. 
 
We have therefore, when R1> R0, a first line character which contains the pointer defined in 
R12/R13 and on the following, the last pointer updated in VMA'. 
 
The video pointer continues to be increased however, even when BORDER is displayed. 
 
This is true both for the horizontal level (R1 management) and the vertical (R6 management). 
 
The VMA’ pointer is 14 bits. When it continues to increment and exceeds the 10-bits definition 
limit, it can modify the Overscan Bits ™ (See Chapter 20.5, page 232) and cause video page 
changes. 
 
When R1 becomes higher than R0, it should be noted, however, that if the R1 update takes place 
exactly when C0=R1 (R1.JIT), then the condition C0=R1 is no longer true and VMA' is not 
updated. If the modification of R1 occurs when C0=R1+1 (C0>R1), then the condition C0=R1 is 
satisfied and VMA’ is updated. 
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Example : 
If the display width of a line is 40 characters (&28), the CRTC will be able to display 1024/40 
different character lines, i.e. 25 complete lines. 
 
When C4=R6=25, the CRTC stops displaying the character lines, but it nevertheless continues to 
increment its pointer and to manage the updates of VMA' when C0=R1 & C9=R9. 
 
If the modification of R1 (>R0) occurs during this period, the video pointer will have overflowed. 
 
If R1 is modified after C4=24, C9=R9 and C0>R1, then the pointer will be equal to 40 x 25=1000 
(the repeated line will contain the characters 1000 to 1023, followed by 0000 to 0015). 
 
If R1 is modified after C4=25, C9=R9 and C0>R1, then the pointer will be equal to 40 x 26=(1040 
and 1023)=16 (the repeated line will contain the characters 0016 to 0055). 
 
VMA' pointer repeated = 960 : 

R1

C4=24 / C9=R9 C0 : 35 36 37 38 39 40 41 42 43 44 45 46

CRTC-VMA'=40x24=960 OUT R1,255

R1

C4=24 / C9=R9 C0 : 35 36 37 38 39 40 41 42 43 44 45 46

CRTC-VMA'=40x24=960 OUT R1,255  
 
VMA' pointer repeated = 1000 (40 x 25) : 
Condition C0=R1 occurred, pointer VMA' was loaded with VMA. 

R1

C4=24 / C9=R9 C0 : 35 36 37 38 39 40 41 42 43 44 45 46

CRTC-VMA'=40x24=960 OUT R1,255  
 

17.4.3 CRTC 2 
When R1>R0, neither pointer is updated with R12/R13. 
All lines are identical in this situation. 
 
On the first line, VMA is affected by VMA' (which itself was affected by R12/R13 when C0=R1 on 
the last frame line). 
 
The replicated address follows the same logic as described for CRTC 1. 
 
So, depending on when R1 becomes greater than R0, it’s the pointer when the BORDER R1 is 
handled which is considered. 
 
However, there is a difference with the CRTC 1 when modifying R1 on the exact position of 
C0=R1. CRTC 1 is faster than CRTC 2 in considering the update of R1 when C0=R1. On CRTC 2, 
an update of R1 on position C0=R1 arrives too late. VMA' update has already taken place using 
the old value of R1. 
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VMA' pointer repeated = 960 : 

R1

C4=24 / C9=R9 C0 : 35 36 37 38 39 40 41 42 43 44 45 46

CRTC-VMA'=40x24=960 OUT R1,255  
 
VMA' pointer repeated = 1000 (40 x 25) : 
Condition C0=R1 occurred, pointer CRTC-VMA' was loaded with CRTC-VMA. 

R1

C4=24 / C9=R9 C0 : 35 36 37 38 39 40 41 42 43 44 45 46

CRTC-VMA'=40x24=960 OUT R1,255   
 

17.5  ACKNOWLEDGMENT R1=0 

17.5.1 CRTC 0, 1, 2 
R0

C0: 3b 3c 3d 3e 3f 0 1 2 3 4 5 BORDER

OUT R1,0

R0

C0: 3b 3c 3d 3e 3f 0 1 2 3 4 5 BORDER

OUT R1,0

R0

C0: 3b 3c 3d 3e 3f 0 1 2 3 4 5 BORDER

OUT R1,0

R0

C0: 3b 3c 3d 3e 3f 0 1 2 3 4 5 NO BORDER 

OUT R1,0 Update of R1 not considered (too late)

Update of R1 not considered (too late)

Update of R1 ok (just in time)  
 

17.5.2 CRTC 3, 4 
R0

C0: 3b 3c 3d 3e 3f 0 1 2 3 4 5 BORDER

OUT R1,0

R0

C0: 3b 3c 3d 3e 3f 0 1 2 3 4 5 NO BORDER 

OUT R1,0

R0

C0: 3b 3c 3d 3e 3f 0 1 2 3 4 5 NO BORDER 

OUT R1,0

R0

C0: 3b 3c 3d 3e 3f 0 1 2 3 4 5 NO BORDER 

OUT R1,0

Update of R1 not considered (too late)

Update of R1 ok (just in time)  
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17.6 INTERLINE BORDER  

17.6.1 R1=R0 AND C0=R0 
CRTC 0, 1, 2, 3, 4 
If R1=R0, all CRTC’s will display 1µs of BORDER on the last character (C0=R0). 
CRTC-R0=3  
CRTC-R1=3 
CRTC-R12/R13=0 
 

DISP OFF (BORDER)

DISP ON R1 R1

R0 R0

C0: 0 1 2 3 0 1 2 3

DISP

OFFS 0 1 2 3 4 5 0 1 2 3 4 5  
 
Note : The pointer in VRAM will continue at offset 6 on the next "character line" (when C9 returns 
to 0)  

17.6.2 R1>R0 AND C0=R0 
CRTC 0, 2 
The consideration of the BORDER is anticipated. 
1 byte of BORDER is generated (for exactly 0.5 µsec) before C0 goes to 0. 
CRTC-R0=3  
CRTC-R1=4 
CRTC-R12/R13=0 

DISP OFF (BORDER)

DISP ON

R0 R0

C0: 0 1 2 3 0 1 2 3

DISP  
 
Note 1 : This behaviour remains true whatever the value of R0. 
If R0=0, then the display alternates between 1 DISP ON byte, and 1 DISP OFF byte. 
When C0 reaches R0 without R1 having been reached, CRTC’s 0 and 2 send a "BORDER ON" 
signal to the GATE ARRAY, which picks it up immediately. These CRTC’s are "ahead" of the 
characters displayed by the GATE ARRAY and send the BORDER signal 0.5 µsec too early. The 
“BORDER OFF” signal is sent on the character following C0=R0. 
 
Note 2 : The VRAM pointer will get "stuck" on VMA'. If the conditions allow it (according to the 
CRTC and the counters values), VMA' can be reloaded by updating R12 and/or R13. 
 
Note 3 : The CRTC 0 has a function to generate conditions for later consideration of the BORDER 
via its R8 register. By playing on the modification of the conditions at the time of their application, 
it is possible to avoid the generation of this BORDER byte. See Chapter 19.2, page 182.  
 
Note 4 : CRTC 2 does not have the SKEW DISP (R8) function and the BORDER byte cannot be 
"cancelled" this way. But does LOGON really have to reveal all its secrets? 
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CRTC 1, 3, 4 
CRTC-R0=3 
CRTC-R1=4 
 
On these CRTC’s, no BORDER bytes are generated between the "frames". 
Frames can therefore be created in the displayable area without a byte appearing between the 
frames. This allows for the possibility of carrying out aggressive plagiarisms… 
 

DISP OFF (BORDER)

DISP ON

R0 R0

C0: 0 1 2 3 0 1 2 3

DISP  
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18 DISPLAY : REGISTER R6 

18.1 GENERAL 
The function of this register is to set the number of character lines displayed vertically. 
When this number is reached, the BORDER is displayed. 
 
The BORDER is displayed when C4=R6 (1st line-character R6). 
This rule is true whatever the value of C9. 
 
Except on CRTC 3 and 4, R6 is considered immediately on the current C0. 
 
The DISPLAY ENABLE pin of the CRTC goes to "OFF" when C4=R6, in the same way as for the R1 
register when C0=R1. 
 
In general when the condition is fulfilled to display the BORDER, it is necessary to wait for a new 
frame (C4=C9=C0=0) to restore the displaying of characters. 
 
With register R1, the BORDER is disabled when C0=0 and enabled when C0=R1. 
 
Whether the border is generated via R1 or R6, the pointer in VRAM continues to be updated. 
In this case, if the BORDER was activated by the condition on R6, the pointer VMA' continues to 
be updated. 

18.2 BORDER R6 DEADLINES AND PRIORITIES 

18.2.1 GENERAL 
The state of the DISPLAY ENABLE pin depends on 2 groups of internal CRTC conditions. 
 
As long as the "R6 conditions" are not satisfied, the "R1 conditions" define the state of the 
DISPLAY ENABLE pin. 
 
When the "R6 conditions" are satisfied, the "R1 conditions" are no longer considered. 
The common condition for restoring the bottom display is C4=C9=C0=0. 
 
In general, the BORDER R6 condition takes precedence over the BORDER R1 condition, however 
there are some differences between CRTC’s. 

18.2.2 CRTC 0, 2 
Except for the first line of a frame (C4=C9=0), positioning R6 with C4 causes the immediate and 
definitive activation of the BORDER until the next frame. 
 
The condition C4=R6 is considered immediately (regardless of the value of C0), and BORDER R6 
has priority over BORDER R1. 
 
This is also true during the C4 character(s) generated during a vertical adjustment. 
 
The value R6=0 used on the first line (C4=C9=0) is treated specifically (See Chapter R6 
CONFLICTS) and it is possible, under conditions, to use this conflict to cancel BORDER R6. 
See Chapter 18.3. 
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18.2.3 CRTC 1 
Positioning R6 with C4 causes the immediate activation of the BORDER, which becomes final until 
the next frame. 
 
The condition C4=R6 is considered immediately (regardless of the value of C0), and BORDER R6 
has priority over BORDER R1. 
 
As with other registers of this CRTC (for example R3) the value 0 is specifically considered and 
triggers a BORDER without the condition C4=R6 being required. 
 
However, if the condition C4=R6 is also fulfilled when C4=0, then this BORDER becomes definitive 
until C4=C9=C0=0. 
 
However, there is an exception to this rule: if the condition C4=R6=0 is true on the last character 
of the frame, then the border is not irreversible. An update of R6<>C4 allows to cancel it. Indeed, 
if the condition C4=R6=0 has already been evaluated on the previous frame, it is no longer re-
evaluated on C4=R6=0 of the new frame. Switching to the new frame has however re-
authorized the background and the border is then only displayed because of R6=0 (and no longer 
because of the equivalence C4=R6). Note that the update of R6=0 on the previous frame is 
considered soon as C0=R0 which precedes the new frame. 
 
In the other cases, when R6 is set to 0 while C4<>0, the BORDER is activated while R6=0, and it 
is deactivated as soon as R6>0 and its new value is different from C4 (in which case, the BORDER 
R6 is activated for the frame) 

18.2.4 CRTC 3, 4 
The R6 test is done at the beginning of the line only. 

The update of R6 during the line is therefore not considered. 
If R6 is set to 0 when C4=0 but C0>0, the BORDER is not activated. 
 
The BORDER is activated only when C0 goes to 0 when C4=R6. 
 
This is also true during a vertical adjustment. 
 
Note: C4 is not incremented on these 2 CRTC’s during vertical adjustment. This implies that if 
R6=R4, then the BORDER will concern the last character as well as the vertical adjustment lines 
defined with R5. 
 
The value of R6=0 is not specifically processed and does not temporarily activate the BORDER as 

on CRTC 1. 

18.3 R6 CONFLICTS 

18.3.1 GENERAL 
 
In order to correctly manage some conflicts, special processing is often carried out when a 
register has the value 0 (particularly on CRTC 1, the domain specialist). 
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This is particularly the case when R1=0, because this value creates a potential conflict: 
deactivation of the BORDER (C0=0 following condition C0=R0), activation of the BORDER 
(C0=R1=0)) 
[ In this situation, it is the deactivation of the BORDER which is activated ] 
 
For R6, the situation is much less well managed, according to the CRTC’s. 

18.3.2 CRTC 0, 2 
Except for the first line of a frame (C4=C9=0), positioning R6 with C4 causes the immediate and 
definitive activation of the BORDER until the next frame. 
 
When C4=R6=0 and C9=0 on CRTC’s 0 and 2, a conflict occurs (this conflict does not exist when 
R6>0). 
 
When R6 is equal to 0 in this situation, the state of DISPLAY ENABLE changes to ON at the 
beginning of the CRTC character and returns to OFF 0.5 µsec later. 
 
In other words, on the first line of the frame, there is an alternation of bytes of BORDER and 
displayable characters (the video pointer continuing to count normally). 
 
At each CRTC character: 

 BORDER R6 passes to true because C4=R6 and C9=0 

 BORDER R6 returns to false because for a new frame (C4=C9=0) 
 
Note : 
This alternation only takes place when the condition R1 is fulfilled (BORDER R1 is false) and the 
conditions of the conflict exist (C4=R6=C9=0). 
 
When the conflict is cancelled (R6 updated with a value > 0), the BORDER does not remain 
activated as on the other lines (and the other CRTC’s). 
 
In this situation however, since R6 has been updated with 0 at least 1 time, the BORDER becomes 
final when C0=R1. 
 
Still in this situation, if we prevent C0=R1 on the line C4=C9=0 (for example R1=R0+1), and R6 
is no longer equal to 0, then the BORDER is deactivated on the following line. 
 
In other words, the condition C4=R6=0=BORDER is cancellable on the first line. 
 
Note :  
Considering for each value of C0 the value of R6 makes it possible to precisely target areas or 
create this alternation BORDER/CHARACTERS by byte. 
 
By means of a nice line-to-line rupture, this allows you to add nice colours from time to time, via 
BORDER, to graphic mode 2, for example, which will be called IIMPSIIA mode for the most 
modest, otherwise directly called Mode <write your nickname here>. 
 
Note that it is possible to achieve a BORDER/CHARACTER alternation on CRTC 0 with R0=0, but 
without the counters C4 and C9 being able to count anymore. 
 
 



V1.4 – 01.2023 – Page 180 / 281 
 

18.3.3 CRTC 1 
When R6 is updated with 0, the BORDER is activated as long as the register value is 0. 
 
The consideration of each value of C0 of the value of R6 makes it possible to precisely target 
zones or create this BORDER. 
 
However, if C4=R6=0 (1st line-character of a new frame) during this update, BORDER R6 
becomes true first for all the rest of the frame, until the new frame (C4=C9=C0 =0). 

18.3.4 CRTC 3, 4 
No conflict exists since the management of R6=0 does not exist during the line and is tested only 
once. 
 
Setting R6 to 0 when C4 and C9 are 0, but C0>0 will have no effect before the new frame (or the 
BORDER will be activated). 
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19 DISPLAY : REGISTER R8 

19.1 GENERAL 
 
The R8 register contains parameters for the management of the INTERLACE mode for all the 
CRTC’s. 
 
On CRTC’s 0, 3 and 4, an additional function exists, which allows for the delaying of the 
management of activation/deactivation of the BORDER, or to deactivate the display as R6=0 does 
on CRTC 1 (except C4=0 on CRTC 1 )). 
 

 
 

 
 

 
 

 
 

  

CRTC 7 6 5 4 3 2 1 0

0 Sc Sc Sd Sd x x i i

1 x x x x x x i i

2 x x x x x x i i

3 x x Sd Sd x x i i

4 x x Sd Sd x x i i

Other CRTC 7 6 5 4 3 2 1 0

MC6845*1 Sc Sc Sd Sd x x i i

UM6845E UpdM US Sc Sd Vdrac Vdrad i i

Interlace

0 0 No interlace

0 1 Interlace Sync Mode

1 0 No interlace

1 1 Interlace Sync & Video Mode

Skew DISPTMG

0 0 Non Skew

0 1 One-character skew

1 0 Two-character skew

1 1 Non-output

Skew CUDISP

0 0 Non Skew

0 1 One-character skew

1 0 Two-character skew

1 1 Non-output
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19.2 FUNCTIONS « SKEW-DISPTMG » 
 
These functions are only available on CRTC’s 0, 3 and 4. 
They allow for the activation of the BORDER or to generate a delay on the BORDER R1 
management. 
 
Note: If the BORDER ON function is activated, the INTERLACE function on the 2 least significant 
bits is not considered. (This point requires further investigation). 

19.2.1 BORDER ON 
This function is activated with 001100xx on R8. 
It allows you to deactivate the display of characters. 
The GATE ARRAY generates BORDER in this situation. 
The update of the DISPEN signal (DISPLAY OFF) is immediately considered. 
The VRAM pointer nevertheless continues to be incremented and the current pointer is updated 
when C0=R1 and C9=C0=0. 
This function does not affect the BORDER R6 state (when C4=R6) and it is therefore possible to 
switch to one of the 3 other available states. 
 
Note: On CRTC 1, this direct assignment of DISPEN is possible by setting R6 to 0. 
However, if C4=0, then the condition C4=R6 is fulfilled, and this causes the end of display until 
C4=C9=C0=0. This problem does not exist with the BORDER ON function. 

19.2.2 BORDER OFF 
This function is activated with 000000xx on R8. 
It indicates to stop managing the other "SKEW" functions. 
 
To be tested: Set the 001100xx function, then wait for C4=R6 to activate the BORDER, and then 
set R8 to 000000xx and see if this can cancel a BORDER R6. 

19.2.3 BORDER DELAY +1 / +2 
These functions are activated with 000100xx & 001000xx 
They provide a mechanism to delay the BORDER R1 management. 
 
Without this function being activated, we have: 

 The BORDER deactivation condition (beginning of line) is performed on the character 
following C0=R0 (C0=0). 

 The BORDER activation condition (end of line) is performed on character C0=R1. 
 
The delay can be 1 or 2 CRTC characters (thus 1 or 2 µsec) depending on the function used. 
The BORDER management conditions remain the same as those described above. 
However, an acknowledgment counter from C0 is applied according to the function: 
 
When the programmed "delay" is 1 µsec: 

 The BORDER is deactivated on the 2nd character after that or C0=R0 (C0=1). 
 The BORDER is activated on the 1st character after the one where C0=R1.  

Note: If R1=R0, then the BORDER is activated on C0=0. 
 
When the programmed "delay" is 2 µsec: 

 The BORDER is deactivated on the 3rd character after that or C0=R0 (C0=2). 
 The BORDER is activated on the 2nd character after the one where C0=R1.  
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Note: If R1=R0, then the BORDER is activated on C0=1. 
The assignment of the video pointer, when C9=R9, follows the same logic when C0 reaches the 
relative value of C0 with respect to R1. 
In other words, the video pointer is stored in relation to the new position of the BORDER. 
 
The consideration of these new test "rules" when R8 is modified is immediate during the line. 
 
The diagram below describes the position of the BORDER according to the programming of the 
registers, for a standard case. R1=59, R0=63, with a modification of R8 occurring elsewhere than 
on the corresponding positions of C0. 
 

Disp R1 R0

C0 55 56 57 58 59 60 61 62 63 0 1 2

Inst OUT R8,0

Disp R1 R0

C0 55 56 57 58 59 60 61 62 63 0 1 2

Inst OUT R8,#10

Disp R1 R0

C0 55 56 57 58 59 60 61 62 63 0 1 2

Inst OUT R8,#20

 
 

Character Display

Border Display

Gap Skew

Border ON on C0=R1 applied

Border ON on C0=R1 not applied

Border OFF on C0=R0 applied

Border OFF on C0=R1 not applied  
 

19.2.4 NO CONDITION C0=R1 
 
In the chapter devoted to the R1 register (17.2) we saw that on CRTC’s 0 and 2, a BORDER byte 
is generated between "2 lines" when R1 is greater than R0. 
 
The condition C0=R1 not being met during the line, the BORDER signal is then sent 0.5 µsec after 
the condition C0=R0 is satisfied. The BORDER is disabled on the next character, 0.5 µsec later.  
The condition C0=R0 therefore replaces the condition C0=R1. 
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Note: On CRTC’s 1, 3 and 4, in the same context (R1>R0, with for example R0=63, R1=64), the 
condition C0=R1 is not met, and the CRTC does not send BORDER ON signal to GATE ARRAY. 
When a delay is programmed using the SKEW DISP functions, the delay is counted based on the 
transitions of C0. In other words, the "deferred" BORDER will be displayed at the beginning of the 
character, as it would have been on the condition C0=R1. 
 

Disp R0

C0 55 56 57 58 59 60 61 62 63 0 1 2

Inst OUT R8,0

Disp R0

C0 55 56 57 58 59 60 61 62 63 0 1 2

Inst OUT R8, #10

Disp R0

C0 55 56 57 58 59 60 61 62 63 0 1 2

Inst OUT R8, #20
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19.2.5 DISINTEGRATION OF THE BORDER ON CRTC 0 
 
There is a period of 1 or 2 µs, depending on the function used, during which it is possible to 
"cancel" the 2 conditions. The CRTC 0 has the possibility of removing this byte from BORDER by 
cancelling the 2 conditions. The CRTC 2 does not have the SKEWDISP functions and therefore 
cannot use this method to make this BORDER byte disappear between 2 lines. 
 
Note: This method can also be used when R1>R0. The condition C0=R1 is just replaced by the 
condition C0=R0 in this case. 
 
For the different situations presented below, it is considered that: 

 R0=R1=63. 
 The programming of R8 is carried out on several lines. Therefore, the last value 

programmed on the line is the one present when the 1st OUT is performed on the 
following line. 

19.2.5.1 SKEW DISP+1 is cancelled on C0<=63.  
 
BORDER management is handled with the 2nd OUT. 
The programming of the 1st OUT (R8=#10) is ignored  
 

R1

Disp R0 x

C0 55 56 57 58 59 60 61 62 63 0 1 2

Inst OUT R8,#10 OUT R8,#0

R1

Disp R0 x

C0 56 57 58 59 60 61 62 63 0 1 2 3

Inst OUT R8,#10 OUT R8,#0

R1

Disp R0 x

C0 57 58 59 60 61 62 63 0 1 2 3 4

Inst OUT R8,#10 OUT R8,#0
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19.2.5.2 SKEW DISP+1 is cancelled on C0=0 : Y GN’EST GNOU ?  
The first OUT (R8=#10) prevents the BORDER from being activated on C0=63 (Condition C0=R1 
which reports the BORDER for C0=0). However, the 2nd OUT (R8=#00) on C0=0 defines a 
BORDER OFF on the next character C0=R0. It is considered immediately and cancels the C0=R1 
condition programmed on the first OUT. 

R1

Disp R0 x

C0 58 59 60 61 62 63 0 1 2 3 4 5

Inst OUT R8,#10 OUT R8,#0

 

19.2.5.3 SKEW DISP+1 is programmed on C0<63.  
The second OUT (R8=#0) occurs too late to prevent the BORDER programmed with the first OUT 
from being activated on the following character C0=63 (Condition C0=R1 which reports the 
BORDER for C0=0). 

R1

Disp R0

C0 59 60 61 62 63 0 1 2 3 4 5 6

Inst OUT R8,#10 OUT R8,#0

R1

Disp R0

C0 60 61 62 63 0 1 2 3 4 5 6 7

Inst OUT R8,#10 OUT R8,#0

 

19.2.5.4 SKEW DISP+1 is programmed on C0=63 : COMBO BORDER !  
Before being programmed with #10, R8 is equal to 0, and the BORDER was programmed for 
C0=R1 (i.e. C0=63). Programming R8 with #10 is not fast enough to prevent the BORDER from 
being activated. However, this programming is considered for the following character, which 
results in an additional BORDER byte 

R1

Disp R0

C0 61 62 63 0 1 2 3 4 5 6 7 8

Inst OUT R8,#10 OUT R8,#0
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19.3 INTERLACE FUNCTIONS 

19.3.1 GENERAL 
The first thing that can be said is that the method of approach on this subject by the various 
CRTC manufacturers is quite... varied. 
 
This first chapter concerns the principle of operation as it is described (very superficially) in the 
technical guides of the components. The chapters devoted to this function will be completed in 
more advanced versions of this document (having not yet finished the analysis of certain results 
for substantive reasons (ah ah)). 
 
There are 2 programmable interlaced modes on all CRTC’s. 
 
The main objective of the interlaced mode is to create a "frame" composed of 2 frames at 50Hz, 
interlaced, in order to display an image with a doubled vertical resolution. A "complete" image is 
made up of 2 "frames" of 50 Hz in order to display a complete image at 25 Hz in 625 lines (30 Hz 
in 525 lines). 
 
To proceed, the CRTC must: 

 Be able to create an image composed of 625 distinct lines (on a 50Hz screen) 

 Display two frames of 312 lines, plus an additional line. 
The length of a frame then being 19968 + 32 = 20000 µsec. 

 
In order to increase the vertical resolution, the CRTC, during VSYNC, delays the signal by half a 
line when C4 changes to R7 for the frame displayed with the even lines. When C4 reaches R7, the 
VSYNC signal from the CRTC is generated taking C0=R0/2 as the new reference 
 
If the CRTC communicated directly with the CTM screen, which is not the case on CPC, this 
would have the effect of raising the electron gun half a line higher (-0.5). But an additional line is 
added at the end of the first frame, which cause to moving the start of the odd frame down one 
line (-0.5+1=0.5) thus allowing the lines to be ordered. 
 
The ability to handle an interlace image depends heavily on the monitor: 

 On the one hand on the persistence capacity of phosphors, to limit flickering (which 
some would call "flashouille" in certain cold and humid French regions). 

 On the other hand, on the stability of the high voltage elements of the monitor to limit 
distortions on the edges of the screen. 

 
On the CPC, the GATE ARRAY “uses” the HSYNC and VSYNC signals to produce a composite signal 
sent after the 2nd HSYNC to the CTM. However, it is the starting position of the VSYNC during the 
line that allows to raise the electron gun more or less high (the later the VSYNC starts in the line, 
the higher the beam goes up). 
  
Since the HSYNC is (in principle) always located in the same place, all the lines displayed on a 
CTM monitor have a definition of 1 pixel, which contradicts the logic stated above. In the case of a 
"Standard" CPC frame with R2=46 and R0=63, the VSYNC generated by the CRTC (on C0=0 on 
the first frame, on C0=31 on the second) is retrieved by the GATE ARRAY, which will wait for the 
end of the 2nd HSYNC to send the signal to the monitor. The electron gun then goes up exactly to 
the same place as on the previous frame (-0.0). 
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The additional line generated at the end of the first frame positions the odd frame 1 complete line 
down (-0.0+1=1). The first line of the even frame then alternates with the additional line, which is 
quite far from the expected effect. 
 
So in this situation we have: 

 1 even frame with a duration of 19968 µsec, the VSYNC not being “shifted”. 
 1 odd frame, which inherits the additional line from the even frame, and lasts 20032 

µsec. 
 
Fortunately, this is far from being irremediable (See Chapter 16.6, page 162). 

19.3.2 THE TWO INTERLACE MODES 

19.3.2.1 INTERLACE SYNC MODE : FUNCTION 00xx0001 
 
This mode is used when you want the CRTC to display the same information for both the even 
and the odd frame. 
 
The objective of this mode is to improve the quality of the characters displayed by filling the 
spaces between the lines in "non-interlace" mode. 
 
In this mode, the CRTC only increases the resolution by moving the position of the VSYNC signal 
by 1/2 line, as indicated in the previous paragraph. 
 
The image in this situation uses the same video memory, displaying the same thing twice. 
In principle, it is not necessary in this mode to reprogram the CRTC registers. 
Line 0 of the even lines frame is displayed first, followed by line 0 of the odd lines frame, and so 
on. 
 

Screen: Even Odd Beautiful drawing

C9= 0

C9= 0

C9= 1

C9= 1

C9= 2

C9= 2

C9= 3

C9= 3

C9= 4

C9= 4

C9= 5

C9= 5

C9= 6

C9= 6

C9= 7

C9= 7  
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19.3.2.2 INTERLACE SYNC & VIDEO MODE : FUNCTION 00xx0011 
 
This IVM mode is called "Video Mode" because it can be used to display images for which each 
of the 625 lines is different. 
 
Contrary to the "Interlace Sync Mode", no line from the 2 frames is repeated. 
 
On the first frame, the CRTC displays the lines for which C9 is even. 
On the second frame, the CRTC displays the lines for which C9 is odd. 
 
At the end of the display of the 2 frames (~0.04 second), the lines follow each other in even/odd 
order. 
 
Given that it is necessary to display twice as many lines, it is therefore necessary to program the 
registers of the CRTC as if we were building a frame of 624 lines. 
 
This logic has been abused by circuit designers. 
 
The addition of the 625th line is managed automatically by the CRTC, as a reminder. 
 
Note: In the UM6845R documents, the figure (7) used to describe this mode is incorrect 
(description of the line numbers displayed in the even/odd frames). 
This error does not exist in the UM6845 documents from UMC (figure 13), which is a "confirmed" 
copy of the HD6845S from HITACHI (and detected as a CRTC 0). 
 

Screen: Even Odd ArtWork from MOMA

C9= 0

C9= 1

C9= 2

C9= 3

C9= 4

C9= 5

C9= 6

C9= 7

C9= 8

C9= 9

C9= 10

C9= 11

C9= 12

C9= 13

C9= 14

C9= 15  
 
Due to the repositioning of the sending of the C-VSYNC by the GATE ARRAY, the even frame is 
displayed a full line earlier than the odd frame. 
 
In this context, line 0 alternates with a line of BORDER, while line 1 alternates with line 2, line 3 
with line 4, and so on… 
 



V1.4 – 01.2023 – Page 190 / 281 
 

The image described above thus appears as on the diagram below, the "common" pixels then 
appearing in their original colours, rather than alternating with the white ink. 
C9 Beautiful Drawing Even Screen C9 Beautiful Drawing Odd Sceen

0 BORDER or PREVIOUS LINE

2 1

4 3

6 5

8 7

10 9

12 11

14 13

15

19.3.3 LIMITATIONS 
 
There are specification differences on the registers to be updated (and their value) in Interlace 
mode between different circuits. These differences are mainly related to the counting mode of C9 
and C4 initially defined by the designers of the circuits. 
 
Of course, these restrictions are made not to be respected, but they nevertheless give interesting 
clues to the inner workings of the counters. 
 
This is particularly the case for the R9 register on CRTC’s 0, 3 and 4, which must be filled require 
with the number of lines of a vertical character, minus 2 for IVM mode. This should facilitate the 
end comparison of even lines, because it suffices to ignore bit 0 to perform the end of character 
comparison and to manage this bit 0 as that of frame parity. 
 
The display of one line out of two causes the faster increment of C4 (on CRTC’s 0, 1, 3, 4) and 
and VSYNC therefore occurs earlier when C4=R7.. The construction of a frame in the IVM mode 
therefore requires adapting R4 and R7 to the total size of the desired frame (except for CRTC 2, 
which adopts another methodology). 
 
When a large frame is defined, it is possible to use "Overscan Bits"™ to avoid having to reprogram 
R12/R13 between even and odd frames, but I digress. 

19.3.4 UNLOVED FEATURE 
 
“Interlace” mode is an unpopular feature with CPC developers. 
Note: I should have released demo 4 :-) 
 
However, this function is managed in real time and its interest is not only related to its ability 
to “properly” process an Interlace image but also by producing, via the GATE ARRAY, a useful 
signal for the monitor. 
 
As soon as the function is activated on a given C9 line, it can affect the C9 and/or C4 count for 
the following lines. 
 
According to the value of C9 and its parity when R8 is modified, then the following line is 
immediately calculated according to a recipe specific for each CRTC. 
 
In other words, from the perspective of creating a "complete" Interlace frame, R8 should in 
principle only be activated when a frame starts (when C4=C9=0). 
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From the perspective of using only certain functions of the IVM interlace, it is possible to activate 
and deactivate this mode before certain functions take place. 
 
Until its activation the frame contains even and odd lines. As soon as IVM mode is activated, the 
frame contains even and/or odd lines (according to rules specific to the CRTC) until IVM mode is 
deactivated, in order to return to "classic" count. 
 
Activating Interlace mode, in addition to modifying the C9 and C4 count, activates two other 
distinct managements: 
 

 The management of one additional line at the end of the first frame, before 
C9=C4=C0=0. 
  

 Management of activation of the VSYNC signal on C0=R0/2 (therefore on 
C0=31 in the case of a frame or R0=63) when C4=R7 (Mid-VSYNC). 
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19.4 VERTICAL INTERLACE PROGRAMMING 

19.4.1 CRTC 0 
 
In INTERLACE SYNC, R9 must be programmed with the value N-1 if N represents the number of 
lines(s) of a vertical C4 character. R4, R5, R6 and R7 must be programmed by considering that C4 
characters contain n line(s) each. 
 
In INTERLACE VIDEOMODE (IVM), R9 must be programmed with value N-2 if N represents the 
number of lines(s) of a vertical character. The CRTC 0 shares this feature with CRTC’s 3 and 4. 
R4, R6 and R7 must be programmed by considering that the characters contain twice less lines. 
When N is odd, a particular logic of balancing takes place (see chapter 19.5.2). R5 still contains a 
finite number of lines without considering the "Interlace" mode. 
 
If a vertical character C4 makes 8 lines, R9 must contain 6. 
If R9 is programmed with 0, this means that there are at least 2 lines displayed (1 per frame). 

19.4.2 CRTC 1 
If N represents the number of line(s) of a vertical character, then R9 must be programmed with 
the value N-1 in the 2 interlace modes. 
 
In INTERLACE SYNC, R4, R5, R6 and R7 must be programmed as if C4 characters contain N 
lines. 
 
In INTERLACE VIDEOMODE (IVM), R4, R6 and R7 must be programmed as if C4 characters 
twice less lines. When N is odd, a particular logic of balancing takes place (see chapter 19.5.3). R5 
still contains a finite number of lines without considering the "Interlace" mode.  

19.4.3 CRTC 2 
If N represents the number of line(s) of a vertical character, then R9 must be programmed with 
the value N-1 in the 2 interlace modes. 
 
In INTERLACE SYNC, R4, R6 and R7 must be programmed by considering that C4 characters 
contain n lines each. R5 still contains a finite number of lines without considering the "Interlace" 
mode 
 
In INTERLACE VIDEOMODE, R4, R6 and R7 must be programmed by considering that C4 
characters contain n lines each. R5 still contains a finite number of lines without considering the 
"Interlace" mode. 
 
For each C4 value, two characters of N/2 lines are treated. 
A specific C9 counter (C9.IVM) is managed for display. This counter is initialized when C9 goes to 
0, but also when it reaches the value of R9 "outside parity", in order to update the VMA video 
pointer without C4 being incremented. (see Chapter 19.8.3). 
 
When R9 = 7, we have C4 characters of 8 lines for each frame with an update of video pointer 
every 4 lines. This greatly simplifies the programming of R4 and R7 in the most common 
situations, since the total number of lines to display during a frame is equivalent to a "no-
interlaced" mode. 
 
Thus R6 concerns 1 "double" character of 8 lines and not 1 character of 4 lines. 
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One more than expected line is therefore displayed on odd frames. 
If R9 is 6, for example, line C9 = 7 will still be displayed on odd frames. 
In addition, the update of the video pointer (when C0 == R1) no longer takes place when C4 is 
included because it takes place only when C9.IVM = R9 (excluding parity). (see Chapter 19.8.3). 
 
C4 continues to be managed normally, but the display is incorrect. 
 
The other CRTC’s allows to manage characters indiscriminately with a number of even or odd 
lines, with a tricky management of the parity of the frame, counters and registers. 
 
It is therefore an urban legend to consider that the CRTC 2 manages the "Interlace" mode better 
than the others CRTC’s. It is certainly simpler to modify only R8 without having to modify R4, R5, 
R6 or R7, but it is impossible to define C4 characters composed of odd lines without this counting 
being aligned with an even number during the odd frames and this causes a serious problem with 
the assignment of the video pointer to each new C4. 

19.4.4 CRTC 3 & 4 
 
In INTERLACE SYNC, R4, R5, R6 and R7 must be programmed as if C4 characters contain N 
lines (and N represents the number of line(s) of a vertical character).  
 
In INTERLACE VIDEOMODE (IVM), R9 must be programmed with value N-2 if N represents the 
number of lines(s) of a vertical character. The AMSTRAD’ CRTC’s shares this feature with CRTC 0. 
R4, R6 and R7 must be programmed by considering that the characters contain twice less lines. 
When N is odd, a particular logic of balancing takes place (see chapter 19.5.5). R5 still contains a 
finite number of lines without considering the "Interlace" mode. 
 
If a vertical character is 8 lines long, R9 must contain 6. 
If R9 is programmed with 0, this means that there are at least 2 lines displayed (1 per frame). 
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19.5 PARITY  

19.5.1 GENERAL 
When it comes to interlace mode, the frame parity plays an important role because it participates 
in: 

 The addition of the extra line when the construction of the even frame is completed. 

 The generation of a MID-VSYNC when C4=R7 on the even frame. 
 Calculation of even and odd C9s. 

 
The common point between all CRTC’s is to have an internal state that switches from even to odd 
and vice versa according to different conditions. Note that on CRTC’s 0, 3 and 4, there is not one, 
but several distinct parity management states (see chapter 19.5.5) 

19.5.2 CRTC 0 
There are several parity management states: 
 

 ParityFrame=ParityR6 when C4=C9=C0=0. This state defines the parity of the first 
C9 of the frame. 
 

 ParityC9 which defines bit 0 of the C9s in “Interlace” mode 
 

 ParitéR6=ParitéFrame xor 1 when C4 reach R6 
 

The ParityR6 state allows the CRTC to anticipate the parity of the next frame. If ParityFrame is 
even, then parity will be odd and vice versa. If C4 cannot reach R6 (because R6> R4) this state is 
no longer updated and ParityFrame remains frozen with the last value of ParityR6. 
 
The management of ParityR6 is independent of the value of R8. 
 
At the start of the frame, ParityFrame=ParityR6. 
C9 parity is managed only when R8 = 3 to update C9. 
 
The ParityR6 state also lets you know if an additional line will be generated at the end of the 
frame (see chapter 19.6.1) 
 
In IVM mode, R9 is programmed with an even number to define an even number of lines in a 
character (For example R9=6 to obtain 2 x 4 line/char=8 lines). This is related to the method 
used to test the end of a character composed only of even lines or odd lines depending on the 
current parity. In this case, the parity is identical regardless of the value of C4. 
 
When R9 is odd in IVM (unlike CRTC 1), this implies a difference between the number of even 
and odd lines for a character between 2 frames (the total number of lines of a vertical character is 
odd). In this circumstance, the designers of the circuit balanced the number of lines between 2 
frames in order to avoid that there is a frame with R4+1 lines more on an even frame than on an 
odd frame. 
 
The adopted solution consists in alternating characters composed of even lines with characters 
composed of odd lines on the same frame each time C4 evolves. Thus, when R9 is odd, the 
parity of the lines depends on that of C4 and on the current parity at the start of the 
frame. 
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C9 parity is calculated so when R8 is 3: 
ParityC9 = C4.0 xor ParityFrame 
(0 = even/1 = odd) 
 
Thus, on an even frame, the parity of C9 is equal to that of C4. 
On an odd frame, the parity of C9 is the opposite of that of C4. 
 
For each even C4, the balance of lines is preserved. 
 
Example : 
R9 = 7. On an even frame with C4 = 0, the CRTC generates 5 even lines (0.2.4.6.8) followed by 4 
odd lines (1.3.5.7). On an odd frame with C4 = 0, the CRTC generates 4 odd lines followed by 5 
even lines. For each even C4, the line balance is thus maintained at 9 lines. 
 
To be fully functionaly, this method involves specific management of VSYNC in IVM mode. 
Indeed, if R7 is scheduled on an odd C4, then the VSYNC is delayed by 1 line. It occurs when C4= 
R7 and C9.VMA=2 on the odd C4s. This avoids phase shift with the VSYNC generated on this 
same C4 on an even frame. 
 

PARITYFRAME=ODD PARITYFRAME=EVEN

C4 C9 C4 C9

0 0 R8=3 0 0

0 3 0 2

0 5 0 4

0 7 0 6

1 0 0 8

VSYNC 1 2 R7=1 1 1 VSYNC

1 4 1 3

1 6 1 5

1 8 1 7

VSYNC 2 1 R7=2 2 0 VSYNC

2 3 2 2

2 5 2 4

2 7 2 6

3 0 2 8

VSYNC 3 2 R7=3 3 1 VSYNC

3 4 3 3

3 6 3 5

3 8 3 7

VSYNC 4 1 R7=4 4 0 VSYNC

4 3 4 2  
 
Note : 
If R8 goes to 3 on an odd C4, this can cause a phase of 1 line between the VSYNC of even and 
odd frames. Indeed, this VSYNC shift technique used by engineers who designed the circuit only 
works properly to manage the line imbalance between an even C4 and an odd C4. 
 
For example, if R9=7 and R8 goes to 3 on C4=1 (C9=0), the number of lines on C4=0 will be 
identical whatever the framework of the frame (namely 8 lines), but it will be different on C4=1 
(or 5 even lines on an odd frame, or 4 odd lines on an even frame). 
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This phase shift in the line of lines between the 2 frames phase the VSYNC: 
 

PARITYFRAME=ODD PARITYFRAME=EVEN

C4 C9 C4 C9

0 0 0 0

0 1 0 1

0 2 0 2

0 3 0 3

0 4 0 4

0 5 0 5

0 6 0 6

0 7 0 7

1 0 R8=3 1 0

1 2 1 3

1 4 1 5

1 6 1 7

1 8 R7=2 2 0 VSYNC

VSYNC 2 1 R7=2 2 2

2 3 2 4

2 5 2 6

2 7 2 8

3 0 R7=3 3 1 VSYNC

VSYNC 3 2 R7=3 3 3

3 4 3 5

3 6 3 7

3 8 R7=4 4 0 VSYNC

VSYNC 4 1 R7=4 4 2

4 3 4 4

4 5 4 6

4 7 4 8

5 0 R7=5 3 1 VSYNC

VSYNC 5 2 R7=5 3 3  
 
Note: On an even frame, the VSYNC occurs in the middle of the line on C0 = R0/2. 
 
There are several methods to select a specific parity. 
 
It is possible to know current parity since there is a counting bug when the IVM mode is activated 
on C9 = R9 with an odd parity, or when the IVM mode is disabled on C9.VMA=R9+1 (See Chapter 
19.8.1). 
 
Once parity is identified, it suffices to let C4 reach R6 once for the parity to reverse.  
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19.5.3 CRTC 1 
 
There are two parity states: 
 
• ParityFrame switch between each frame when C4 = C9 = C0 = 0 
 
• ParityC9 switch between each C4 if R9 is even. 
 
When a frame starts, ParityFrame switch off even to odd and vice versa, whatever the value 
of R8. 
 
If ParityFrame is even, then an additional line and a MID-VSYNC are scheduled. 
If ParityFrame is odd, then no additional line and no MID-VSYNC. 
 
When R9 is even, the number of lines of a vertical character is odd. In this circumstance, the 
designers of the circuit balanced the number of lines between 2 frames in order to avoid that 
there is a frame with R4+1 lines more on an even frame than on an odd frame. 
 
The adopted solution consists in alternating characters composed of even lines with characters 
composed of odd lines in the same frame. Thus, when R9 is even, the parity of the lines 
depends on that of C4 and on the current parity at the start of the frame.  
 
However, contrary to what was done on CRTC’s 0, 3 and 4, there is no specific management of 
the VSYNC in IVM mode when the number of lines of a character is odd. The VSYNC is not 
delayed from a line on odd C4s when R9 is even. So, it is impossible to position R7 on an odd C4 
without creating a gap of 1 line on the VSYNC between 2 frames: 
 

EVEN FRAME ODD FRAME

C4 C9 C4 C9

+32 0 0 VSYNC VSYNC 0 1

0 2 0 3

0 4 0 5

0 6 0 7

0 8 VSYNC 1 0

+32 1 1 VSYNC 1 2

1 3 1 4

1 5 1 6

1 7 1 8

+32 2 0 VSYNC VSYNC 2 1

2 2 2 3

2 4 2 5

2 6 2 7

2 8 VSYNC 3 0

+32 3 1 VSYNC 3 2

3 3 3 4

3 5 3 6

3 7 3 8

+32 4 0 VSYNC VSYNC 4 1

4 2 4 3

4 4 4 5

4 6 4 7

4 8 VSYNC 5 0

+32 5 1 VSYNC 5 2

5 3 5 4  
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When R8 is modified (R8 changes from 0 to 3 or vice versa), the parity and/or bit 0 of C9 are 
updated according to rules which involve the current parity, the parity of C9 before the change to 
IVM and the parity of C4 if R9 is even.  
 
These updates are performed on the 3rd and 4th µseconds of the OUT(C),C instruction (on R8). 
 
On the 3rd µsecond when R8 changes from 3 to 0 or vice versa: 
 

 If R9 is even, the parities of C4 and C9 are used to set the parity of the new C9. 

 If R9 is odd, only the parity of C9 is used to set the parity of the new C9. 
  
 ParityC9 = C9.0 
 ParityC9 = ParityC9 xor (C4.0 and not (R9.0)) 
 
It should be noted that the current parity of the frame is not modified. 
 
On the 4th µsecond when IVM becomes active (OUT R8,3): 
 

 If ParityFrame is even and R9 is even, then the parity is equal to that of C4. 

 If ParityFrame is even and R9 is odd, then the parity is even. 
 Parityframe changes to even, except for cases where ParityFrame and ParityC9 

were odd before the request for IVM. 
 
 If (ParityFrame==EVEN) 
 Then  
  ParityC9=C4.0 and (not R9.0)  
 End If 
 ParityFrame=ParityFrame and (ParityC9 xor (C4.0 and (not R9.0))) 
  
On the 4th µsecond when IVM goes idle (OUT R8.0): 
When IVM mode is disabled (OUT R8,0), then ParityFrame is equal to ParityC9. 
 
 ParityFrame=ParityC9 
 
If IVM mode is toggled on and off on an even C9 line, regardless of the value of R9, the parity is 
set to EVEN. It is thus possible to fix the parity quite easily on this CRTC.  
 
Parityframe is reversed with each new frame. 
 
ParityC9 is reversed with each C4 increasing when R9 is peer. 
 
It is necessary to take these permutations into account if the IVM mode is left active for several 
frames. 
 
The R9 bit 0 is considered immediately by IVM activation. Modifying it before or after the 
activation of the IVM mode therefore affects C9. Conversely, deactivate the IVM mode can also 
modify C9, and modify the end condition of character C4. 
 
The diagrams below describe all the scenarios that can be encountered when IVM mode is 
activated, then deactivated. 
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Initial parity: EVEN 
 
The diagrams below describe the frame parity and the parity of C9 for a current even parity, 
according to the parity of the previous C9 and that of C4 (when R9 is even), when there is an out 
R8, 3 followed by an OUT R8,0 
 

R9.0=0 R9.0=1

C4.0=0 SHAKER 22C/3/Test 19 (S), 23 (W) SHAKER 22C/3/Test 20 (T), 24 (X)

R9.0 0 0 0 0 0 0 0 0 0 0 0 0 R9.0 1 1 1 1 1 1 1 1 1 1 1 1

C4.0 0 0 0 0 0 0 0 0 0 0 0 0 C4.0 0 0 0 0 0 0 0 0 0 0 0 0

Parity 0 0 0 0 0 0 0 0 0 0 0 0 Parity 0 0 0 0 0 0 0 0 0 0 0 0

C0 0 1 2 3 4 5 6 7 8 9 10 11 C0 0 1 2 3 4 5 6 7 8 9 10 11

C9.0=0 C9 0 0 0 0 0 0 0 0 0 0 0 0 C9.0=0 C9 0 0 0 0 0 0 0 0 0 0 0 0

OUT R8,3 on OUT R8,0 off OUT R8,3 on OUT R8,0 off

ParFrame=0 ParFrame=0

ParC9=C4.0=0 ParC9=0 ParC9=0 ParC9=0

ParFrame=0 ParFrame=0

ParC9=0 ParC9=0

SHAKER 22C/3/Test 17 (Q) ,21 (U), 25 (Y1) SHAKER 22C/3/Test 18 ( R ), 22 (V), 26 (Z1)

R9.0 0 0 0 0 0 0 0 0 0 0 0 0 R9.0 1 1 1 1 1 1 1 1 1 1 1 1

C4.0 0 0 0 0 0 0 0 0 0 0 0 0 C4.0 0 0 0 0 0 0 0 0 0 0 0 0

Parity 0 0 0 0 0 0 0 0 0 0 0 0 Parity 0 0 0 0 0 0 0 0 0 0 0 0

C0 0 1 2 3 4 5 6 7 8 9 10 11 C0 0 1 2 3 4 5 6 7 8 9 10 11

C9.0=1 C9 1 1 1 1 1 1 0 0 0 0 0 0 C9.0=1 C9 1 1 1 1 1 1 0 0 0 0 0 0

OUT R8,3 on OUT R8,0 off OUT R8,3 on OUT R8,0 off

ParFrame=0 ParFrame=0

ParC9=C4.0=0 ParC9=0 ParC9=0 ParC9=0

ParFrame=0 ParFrame=0

ParC9=1 ParC9=1

 
R9.0=0 R9.0=1

C4.0=1 SHAKER 22C/3/Test 4(D), 8 (H) SHAKER 22C/3/Test 5( E ), 9 (I)

R9.0 0 0 0 0 0 0 0 0 0 0 0 0 R9.0 1 1 1 1 1 1 1 1 1 1 1 1

C4.0 1 1 1 1 1 1 1 1 1 1 1 1 C4.0 1 1 1 1 1 1 1 1 1 1 1 1

Parity 0 0 0 0 0 0 1 1 1 0 0 0 Parity 0 0 0 0 0 0 0 0 0 0 0 0

C0 0 1 2 3 4 5 6 7 8 9 10 11 C0 0 1 2 3 4 5 6 7 8 9 10 11

C9.0=0 C9 0 0 0 0 0 1 1 1 1 0 0 0 C9.0=0 C9 0 0 0 0 0 0 0 0 0 0 0 0

OUT R8,3 on OUT R8,0 off OUT R8,3 on OUT R8,0 off

ParFrame=0 ParFrame=0

ParC9=C4.0=1 ParC9=0 ParC9=0 ParC9=0

ParFrame=0 ParFrame=0

ParC9=1 ParC9=0

SHAKER 22C/3/Test 2(B), 6 (F) SHAKER 22C/3/Test 3( C ), 7 (G)

R9.0 0 0 0 0 0 0 0 0 0 0 0 0 R9.0 1 1 1 1 1 1 1 1 1 1 1 1

C4.0 1 1 1 1 1 1 1 1 1 1 1 1 C4.0 1 1 1 1 1 1 1 1 1 1 1 1

Parity 0 0 0 0 0 0 1 1 1 0 0 0 Parity 0 0 0 0 0 0 0 0 0 0 0 0

C0 0 1 2 3 4 5 6 7 8 9 10 11 C0 0 1 2 3 4 5 6 7 8 9 10 11

C9.0=1 C9 1 1 1 1 1 0 1 1 1 0 0 0 C9.0=1 C9 1 1 1 1 1 1 0 0 0 0 0 0

OUT R8,3 on OUT R8,0 off  OUT R8,3 on OUT R8,0 off

ParFrame=0 ParFrame=0

ParC9=C4.0=1 ParC9=0 ParC9=0 ParC9=0

ParFrame=0 ParFrame=0

ParC9=0 ParC9=1

 

  



V1.4 – 01.2023 – Page 200 / 281 
 

Initial parity: ODD 
 
The diagrams below describe the frame parity and the parity of C9 for an odd current parity, 
according to the parity of the previous C9 and that of C4 (when R9 is even), when there is an out 
R8, 3 followed by an OUT R8,0 
 

R9.0=0 R9.0=1

C4.0=0 SHAKER 22C/3/Test 27 (ZA), 29 (ZC) SHAKER 22C/3/Test 28 (ZB), 30 (ZD)

R9.0 0 0 0 0 0 0 0 0 0 0 0 0 R9.0 1 1 1 1 1 1 1 1 1 1 1 1

C4.0 0 0 0 0 0 0 0 0 0 0 0 0 C4.0 0 0 0 0 0 0 0 0 0 0 0 0

Parity 1 1 1 1 1 0 0 0 0 0 0 0 Parity 1 1 1 1 1 1 0 0 0 0 0 0

C0 0 1 2 3 4 5 6 7 8 9 10 11 C0 0 1 2 3 4 5 6 7 8 9 10 11

C9.0=0 C9 0 0 0 0 0 0 0 0 0 0 0 0 C9.0=0 C9 0 0 0 0 0 0 0 0 0 0 0 0

OUT R8,3 on OUT R8,0 off OUT R8,3 on OUT R8,0 off

ParFrame=0 ParFrame=0

ParC9=0 ParC9=0

ParFrame=0 ParFrame=0

ParC9=0 ParC9=0

SHAKER 22C/3/Test 16 (P), 25 (Y2) SHAKER 22C/3/Test 26 (Z)

R9.0 0 0 0 0 0 0 0 0 0 0 0 0 R9.0 1 1 1 1 1 1 1 1 1 1 1 1

C4.0 0 0 0 0 0 0 0 0 0 0 0 0 C4.0 0 0 0 0 0 0 0 0 0 0 0 0

Parity 1 1 1 1 1 1 1 1 1 1 1 1 Parity 1 1 1 1 1 1 1 1 1 1 1 1

C0 0 1 2 3 4 5 6 7 8 9 10 11 C0 0 1 2 3 4 5 6 7 8 9 10 11

C9.0=1 C9 1 1 1 1 1 1 1 1 1 1 1 1 C9.0=1 C9 1 1 1 1 1 1 1 1 1 1 1 1

OUT R8,3 on OUT R8,0 off OUT R8,3 on OUT R8,0 off

ParFrame=1 ParFrame=1

ParC9=1 ParC9=1

ParFrame=1 ParFrame=1

ParC9=1 ParC9=1

 
R9.0=0 R9.0=1

C4.0=1 SHAKER 22C/3/Test 12 (L), 14(N) SHAKER 22C/3/ Test (M), 15 (O)

R9.0 0 0 0 0 0 0 0 0 0 0 0 0 R9.0 1 1 1 1 1 1 1 1 1 1 1 1

C4.0 1 1 1 1 1 1 1 1 1 1 1 1 C4.0 1 1 1 1 1 1 1 1 1 1 1 1

Parity 1 1 1 1 1 1 1 1 1 0 0 0 Parity 1 1 1 1 1 0 0 0 0 0 0 0

C0 0 1 2 3 4 5 6 7 8 9 10 11 C0 0 1 2 3 4 5 6 7 8 9 10 11

C9.0=0 C9 0 0 0 0 0 1 1 1 1 0 0 0 C9.0=0 C9 0 0 0 0 0 0 0 0 0 0 0 0

OUT R8,3 on OUT R8,0 off OUT R8,3 on OUT R8,0 off

ParFrame=0 ParFrame=0

ParC9=0 ParFrame=0 ParC9=0

ParFrame=0 ParC9=0

ParC9=1

SHAKER 22C/3/Test 1 (A), 10 (J2) SHAKER 22C/3/Test 11 (K2)

R9.0 0 0 0 0 0 0 0 0 0 0 0 0 R9.0 1 1 1 1 1 1 1 1 1 1 1 1

C4.0 1 1 1 1 1 1 1 1 1 1 1 1 C4.0 1 1 1 1 1 1 1 1 1 1 1 1

Parity 1 1 1 1 1 1 0 0 0 1 1 1 Parity 1 1 1 1 1 1 1 1 1 1 1 1

C0 0 1 2 3 4 5 6 7 8 9 10 11 C0 0 1 2 3 4 5 6 7 8 9 10 11

C9.0=1 C9 1 1 1 1 1 0 0 0 0 1 1 1 C9.0=1 C9 1 1 1 1 1 1 1 1 1 1 1 1

OUT R8,3 on OUT R8,0 off OUT R8,3 on OUT R8,0 off

ParFrame=1 ParFrame=1

ParC9=1 ParFrame=1 ParC9=1

ParFrame=1 x ParC9=1

ParC9=0
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19.5.4 CRTC 2 
There are several parity management states: 
 

 ParityFrame=ParityR6 when C4=C9=C0=0. This state defines the parity of the first 
C9 of the frame. 

 

 ParitéR6=ParitéFrame xor 1 when C4 reach R6 
 
The ParityR6 state allows the CRTC to anticipate the parity of the next frame. If ParityFrame is 
even, then parity will be odd and vice versa. If C4 cannot reach R6 (because R6> R4) this state is 
no longer updated and ParityFrame remains frozen with the last value of ParityR6. 
 
The management of ParityR6 is independent of the value of R8. 
 
The ParityR6 state also lets you know if an additional line will be generated at the end of the 
frame (see chapter 19.6.3) 
 
At the start of the frame, ParityFrame = ParityR6. 
C9 parity is managed only when R8 = 3 to update C9. 
 
Unlike other CRTC’s, C9 management has been carried out in a simple way, not without 
introducing some constraints (R9 odd for example). 
 
Parity is respected whatever the values of R9 and C4. 
On the other CRTCs, R9 defines a total number of lines to share between 2 frames, which is a 
problem when this number of lines is odd, and requires some adjustments in order to balance the 
lines between 2 frames and properly treat the VSYNC. 
 
Parity management for the “calculation” of C9 is considered immediately from the 3rd NOP of 
OUT(C) on R8: 
 

EVEN PARITY FRAME

C0 0 1 2 3 4 5 6 7 8 9 10 11

C9 3 3 3 3 3 3 3 3 3 3 3 3

C9.Vma 3 3 3 3 3 6 6 6 6 3 3 3

OUT R8,3 on OUT R8,0 off  
 

ODD PARITY FRAME

C0 0 1 2 3 4 5 6 7 8 9 10 11

C9 3 3 3 3 3 3 3 3 3 3 3 3

C9.Vma 3 3 3 3 3 7 7 7 7 3 3 3

OUT R8,3 on OUT R8,0 off  
 

CRTC 2 may not be able to do SPLITBORDER, but it can do SPLITC9! 

It is possible to test the existence of the additional line to determine parity. If the IVM mode is 

activated on the first line of an odd frame, then this line will become an additional line, and a new 

line 0 will follow the old line 0, which will extend the size of the frame with R0 µsec.  
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19.5.5 CRTC 3 & 4 
 
There are two parity states: 
 
• ParityFrame switch between each frame when C4=C9=C0= 0 
 
• ParityC9 switch between each C4 if R9 is even. 
 
When a frame starts, ParityFrame switch off even to odd and vice versa, whatever the value 
of R8. 
 
If ParityFrame is even, then an additional line and a MID-VSYNC are scheduled. 
If ParityFrame is odd, then no additional line and no MID-VSYNC. 
 
At the beginning of the frame, Parityc9=ParityFrame. 
 
When R8 changes to 1 or 3, Parityc9=C9.0 (Parityc9 is fixed with the parity of the current C9). 
This C9 parity is managed only when R8 = 3 to update C9. 
 
ParityC9 switches to each new C4 when R9 is odd (as on CRTC 0) (odd number of lines for a 
character in IVM mode). 
 
This means that it is possible to have even C9’s on a first odd frame, or odd C9’s on a first even 
frame. The parity of C9 then aligns with the parity of the frame. 
 
In other words, the parity of the C9 is defined immediately when R8 goes to 3 in opposition to 
the parity of the frame (which then acts only at the level of the additional line and the MID-
VSYNC). In this case, the C9 parity will then be identical on the following frame. Unlike CRTC’s 1 
and 2, and as CRTC 0, C9 does not change during the line. 
 
In IVM mode, R9 is programmed with an even number to define an even number of lines in a 
character (For example R9=6 to obtain 2 x 4 line/char=8 lines). This is related to the method 
used to test the end of a character consisting of only even lines or odd lines according to the 
ParityC9 state. In this case, the parity is identical regardless of the value of C4. 
 
When R9 is odd in IVM (as on CRTC 0), this implies a difference between the number of even and 
odd lines for a character between 2 frame (the total number of lines of a vertical character is 
odd). In this circumstance, the designers of the circuit balanced the number of lines between 2 
frames in order to avoid that there is a frame with R4+1 lines more on an even frame than on an 
odd frame.  
 
The adopted solution consists in alternating characters composed of even lines with characters 
composed of odd lines on the same frame each time C4 evolves. Thus, when R9 is odd, the 
parity of the lines depends on that of C4 and on the current parity of C9. (The parity of 
C9 being reloaded from the parity of the frame at each new frame). 
 
To be fully functional, this method involves specific management of VSYNC in IVM mode. Indeed, 
if R7 is programmed on an odd C4 during an odd frame, then the VSYNC is delayed by 1 line. 
This avoids phase shift with the VSYNC generated on this same C4 on an even frame. The 
following diagram shows this balancing after 1 frame. 
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PARITYFRAME=ODD PARITYFRAME=EVEN

C4 C9 C4 C9

0 1 0 0

0 3 0 2

0 5 0 4

0 7 0 6

1 0 0 8

VSYNC 1 2 R7=1 1 1 VSYNC

1 4  1 3

1 6 1 5

1 8 1 7

VSYNC 2 1 R7=2 2 0 VSYNC

2 3 2 2

2 5 2 4

2 7 2 6

3 0 2 8

VSYNC 3 2 R7=3 3 1 VSYNC

3 4 3 3

3 6 3 5

3 8 3 7

VSYNC 4 1 R7=4 4 0 VSYNC

4 3 4 2  
 
However, according to the parity of C9 on which R8 changes to 3, this can lead to a contradiction 
between the parity of the frame and the parity of C9 on the first frame. There may also be a 
counting imbalance if R8 goes to 3 on an odd C9. 
 
Example 1: R9=7. If R8 goes to 3 on C9=1 (odd) on an odd frame, line C9=0 has already been 
displayed and there are therefore 1 more line on C4=0. The frame being odd, the VSYNC is 
delayed by 1 line on the odd C4s. On the following frame (even), the VSYNC will not be delayed 
at each odd C4. This leads to a VSYNC imbalance between the first 2 frames on all the values of 
R7: 
 

PARITYFRAME=ODD PARITYFRAME=EVEN

C4 C9 C4 C9

0 0 0 0

R8=3 0 1 0 2

0 3 0 4

0 5 0 6

0 7 0 8

1 0 R7=1 1 1 VSYNC

VSYNC 1 2 R7=1 1 3

1 4 1 5

1 6 1 7

1 8 R7=2 2 0 VSYNC

VSYNC 2 1 R7=2 2 2

2 3 2 4

2 5 2 6

2 7 2 8

3 0 R7=3 3 1 VSYNC

VSYNC 3 2 R7=3 3 3

3 4 3 5

3 6 3 7

3 8 R7=4 4 0 VSYNC

VSYNC 4 1 R7=4 4 2

4 3 4 4  
 

Note: On an even frame, the VSYNC occurs in the middle of the line on C0 = R0/2. 
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Example 2: R9=7. If R8 changes to 3 on C9=1 (odd) on an even frame, line C9=0 has already 
been displayed and there are therefore 1 more line on C4=0. The frame being even, the VSYNC 
is not delayed by 1 line on the odd C4s. On the following frame (odd), the VSYNC will be delayed 
at each C4 odd. This leads to a VSYNC imbalance between the first 2 frames on the even R7’s: 
 

PARITYFRAME=EVEN PARITYFRAME=ODD

C4 C9 C4 C9

0 0 0 1

R8=3 0 1 0 3

0 3 0 5

0 5 0 7

0 7 1 0

VSYNC 1 0 R7=1 1 2 VSYNC

1 2 1 4

1 4 1 6

1 6 1 8

1 8 R7=2 2 1 VSYNC

VSYNC 2 1 R7=2 2 3

2 3 2 5

2 5 2 7

2 7 3 0

VSYNC 3 0 R7=3 3 2 VSYNC

3 2 3 4

3 4 3 6

3 6 3 8

3 8 R7=4 4 1 VSYNC

VSYNC 4 1 R7=4 4 3

4 3 4 5  

To prevent the transition from creating a problem on the first 2 frames, R8 must be programmed 
with 3 on the first line of a peer frame. The problem being that knowing the parity of a frame 
requires going into IVM mode (R8 = 3). So there is one in two chance that the VSYNC is worthy of 
the first two frames.  
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19.6 ADDITIONAL INTERLACE LINE 

19.6.1 CRTC 0 
 
The additional line is added at the end of the frame (after the R5 lines if necessary) if one of the 
two “Interlace” modes is activated (R8=3 or 1) and the ParityR6 state is odd. 
 
As a reminder, ParityR6 state becomes odd when C4 reaches R6 on an even frame, and even 
when C4 reaches R6 on an odd frame, because it is used to anticipate the parity of the following 
frame. 
 
If R6>R4, ParityR6 state is no longer updated and this has the effect of freezing the parity of the 
frame and the addition of the additional line. 
 
This management principle implies that if we are on an even frame, and that C4 reaches R6, then 
ParityR6 becomes odd. An additional line will then be generated at the end of this even frame. 
The new frame becomes odd (equal to ParityR6). But if, during this new frame (odd) C4 can no 
longer reach R6 (because R6 has been modified to be greater than R4) then an additional line will 
be generated for each frame as long as R6>R4 (and R8=3 or 1), whatever the parity of the C9’s. 
The opposite is true: ParityR6 becomes even, and there is therefore no additional line at the end 
of the frame. The following frame becomes even, but if R6 becomes greater than R4 during this 
frame, then all the frames will remain even and without additional line. 
 
C4 is incremented only once for all additional lines (R5 and interlace) and is equal to C4=R4+1. 

19.6.2 CRTC 1 
 
The additional line is added at the end of the frame (after the R5 lines if necessary) if one of the 
two “Interlace” modes is activated (R8=3 or 1) and if ParityFrame is even. 
 
C4 is incremented each time C9=R9. When the interlace mode is active, if R9+1 is a multiple of 
R5 then C4 is incremented once again on all even frames. So the CRTC completes the C4/C9 lines 
according to the counting mode. 

19.6.3 CRTC 2 
 
The additional line is added at the end of the frame (after the R5 lines if necessary) if one of the 
two “Interlace” modes is activated (R8=3 or 1) and the ParityR6 state is odd. 
 
As a reminder, ParityR6 state becomes odd when C4 reaches R6 on an even frame, and even 
when C4 reaches R6 on an odd frame, because it is used to anticipate the parity of the following 
frame. 
 
If R6>R4, ParityR6 state is no longer updated and this has the effect of freezing the parity of the 
frame and the addition of the additional line. 
 
This management principle implies that if we are on an even frame, and that C4 reaches R6, then 
ParityR6 becomes odd. An additional line will then be generated at the end of this even frame. 
The new frame becomes odd (equal to ParityR6). But if, during this new frame (odd) C4 can no 
longer reach R6 (because R6 has been modified to be greater than R4) then an additional line will 
be generated for each frame as long as R6>R4 (and R8=3 or 1), whatever the parity of the C9’s. 
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The opposite is true: ParityR6 becomes even, and there is therefore no additional line at the end 
of the frame. The following frame becomes even, but if R6 becomes greater than R4 during this 
frame, then all the frames will remain even and without additional line. 
 
C4 is incremented each time C9 = R9. When the interlace mode is active, if R9+1 is a multiple R5, 
then C4 is incremented once again on all even frames. If R7 is scheduled with this C4 value, there 
is no more VSYNC one in 2. 
 
There is a noticeable bug on the management of the additional line. 
 
If the IVM mode is activated on the first line of an odd frame, then this line will become 
an additional line, and a new line 0 will follow the old line 0, which will extend the size of the 
frame by R0 µsec. This is true whatever the value of C0 (0 to R0) on which the IVM mode is 
activated. 
 
Conversely, if the IVM mode is disabled during the additional line (C4 being then greater than R4), 
then C4 will not be automatically reset to 0 on the next line. C9 will count until it reaches R9, and 
C4 will increment until it reaches R4. 
 
Example: if R4=38 (R5=0) and an additional line is generated because IVM is active at the end 
of the even frame (R8=3 when C4=R4, C9=R9, C0=R0) then an additional IVM line is added on 
C4=39, C9=0. If IVM is disabled on this line (R8=0), then C9 will count to R9, then C4 will be 
incremented again to 40 (because R4=38). 
 
If the parity was odd when the IVM mode is activated on line 0, this line, now considered as an 
additional line, immediately becomes odd. Thus the C9 displayed as soon as R8=3 on this line will 
be odd (i.e. C9=1). The additional line cannot be triggered with a fixed even parity, because 
ParityR6 is false on an odd frame when C4=R6. This last condition is necessary to obtain an 
even parity. 

19.6.4 CRTC’S 3 & 4 
 
The additional line is added at the end of the frame (after the R5 lines if necessary) if one of the 
two “Interlace” modes is activated (R8=3 or 1) and if ParityFrame is even. 
 
The addition of the additional line does not depend on the C4=R6 equivalence, unlike CRTC’s 0 
and 2. 
 
When the additional line is added, C4 is not incremented (unlike all other CRTC’s). The last value 
of C4 carries all the lines programmed in R9, plus those of R5 plus the additional Interlace line 
generated during the even frames. 
 
Note: The additional line generated does not consider parity states as on other CRTC’s. C9 will 
always be 0, even if the other lines are odd on C4=R4. 
 
Note: The update of the video pointer is considered on C9=R9 of C4=R4 without C4 being 
incremented. The first additional line begins with the pointer that VMA was worth at the time 
when C9=R9 and C0=R1. 
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19.7 MID-VSYNC 

19.7.1 GENERALITIES 
 
MID-VSYNC defines a VSYNC that occurs in the middle of a line. 
 
In general, VSYNC occurs when C4 is equal to R7 on any position of C0 (except on CRTC’s 3 and 
4, which dictate that C4=C9=C0=0). 
 
There is also an exception on CRTC’s 0, 3 and 4 when the line count of a C4 character is odd on 
an odd frame and an odd C4. The VSYNC can then be delayed by one line. MID-VSYNC is not 
cumulative with this line because it cannot occur on an odd frame with an odd C4. 
 
When the state of MID-VSYNC is active, then the VSYNC only triggers when C0 reaches R0/2. 
  
This is what in principle allows to create half-lines, in conjunction with the additional line which 
allows the monitor to compensate for the difference between 2 frames in "Interlace" (each frame 
then occupying 32 µs more (with R0=63)). 

19.7.2 CRTC 0, 1, 2 
 
The MID-VSYNC is generated when C4=R7 if ParityFrame is even (and R8 is 3 or 1). 
 
If R7=0, the management of the VSYNC coincides with the start of the frame. 
ParityFrame management takes priority over VSYNC management. 
 
Thus, if R7=0, and ParityFrame switch and becomes even when C4=C9=C0=0, the C4/R7 
comparison will then be processed to trigger a VSYNC. 
 
If R8=3 or R8=1, and ParityFrame has change to even, then VSYNC will occur when C0 
reaches R0/2. 
 
MID-VSYNC therefore always takes place when ParityFrame is even, including when R7=0. 

19.7.3 CRTC’s 3, 4 
 
The MID-VSYNC is generated when C4=R7 if ParityFrame is even (and R8 is 3 or 1). 
 
In the particular case where R7=0, the management of the VSYNC coincides with the start of the 
frame. In this case, the management of the VSYNC has priority over the assignment of 
ParityFrame. 
 
Thus, if R7=0 (and R9=3 or 1), the C4/R7 comparison is processed before ParityFrame switch. 
 
If ParityFrame was odd, then there will be no MID-VSYNC, and VSYNC will start on 
C4=C9=C0=0, although ParityFrame has change to Even. 
Conversely, if ParityFrame was even, then there will be a MID-VSYNC, and the VSYNC will 
start when C0 reaches R0/2 and even though ParityFrame has become odd. 
  
MID-VSYNC therefore always takes place when ParityFrame is even, except when R7=0. 
And it never occurs when ParityFrame is odd, except when R7=0. 
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19.8 COUNTING IN INTERLACE VIDEOMODE 

19.8.1 CRTC 0 
 
When IVM mode is activated, counter C9 continues to increment normally. 
 
However, when C9 is used in building up the VMA address, C9 is considered shifted left by 1 bit, 
and bit 0 represents parity. Each increment therefore “corresponds” to an addition of 2 to the 
counter C9-VMA considering ParityC9. 
 
The increment management of C9 continues to be processed on the normal value of C9. 
 
From the line C9 which follows that where R8 goes to 3, the value of C9 is multiplied by 2 
to be tested with R9 in order to allow C9 to return to 0. The capacity of R9 being 5 bits, the more 
significant bit is "lost" in the multiplication operation. 
 
We can formulate it like this on the lines located after the one where R8 has gone to 3: 
 
If ((C9 x 2) or ParityFrame)== (R9+ParityFrame) 
Then 
 If C4==R4 (end of frame (last line true)) 
 Then 
  C4=0 
  If ParityR6==true (true if C4==R6 is true on even frame) 
   ParityFrame=ParityFrame xor 1 
  End if 
 Else 
  C4++ 
 End If 
 If R9.0=0 (C9 parity switched if R9 is odd) 
 Then 
  ParityC9=C4.0 xor ParityFrame 
 End of  
 C9=0   
 C9.VMA=(C9 x 2) or ParityC9 
Else 
 C9=C9+1 
 C9.VMA=(C9 x 2) or ParityC9 
End If 
 
When R8 changes to 3, a status indicates that the calculation of the value compared to ‘R9 or 
ParityFrame’ will be performed on the next C0=0, after the C9/R9 test of the line. This is most 
certainly done in this way to prevent the C9 used for the display from switching mid-line. The test 
value for R9 is therefore the old C9, but the parity is however considered immediately for 
R9. 
 
Thus, on the line where R8 goes to 3, it is C9 (and not C9.VMA) which is compared to “R9 or 
ParityFrame”. If C9=R9 and the parity is odd, then the test C9=R9+1 is false: C9 is not 
reset to 0 and overflows. In other words, C9=R9+1. 
 
The value of C9 when R8 goes to 3 can lead to an overflow of C9. 
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For example, if R9=6 and C9=4 when R8 goes to 3, C9 is different from “R9 or ParityFrame” (6 
or 7) and the following C9 will therefore be C9+1=5. The C9.VMA displayed (and tested until the 
end of the line) will be (C9x2)+ParityFrame, i.e. 10 or 11 depending on the current parity. C9 will 
then continue to increment until C9x2+ParityFrame equals “R9 or ParityC9”. 
 
When R8 returns to 0, the same mechanics apply. The state set with R8 is considered when C0 
returns to 0. The test takes place with C9.VMA (which includes parity) and R9: ParityC9 is no 
longer considered for R9. The limit test is therefore carried out with ‘C9x2+ParityFrame’ (C9.VMA) 
and R9 (without parity). 
 
Note: The C9/R9 or C9.VMA/’R9 or ParityC9’ test also takes place when C0=R1 (which determines 
the activation of the BORDER) and the assignment of VMA' with VMA when C9=R9 (or C9.VMA= 
R9 or ParityC9). Considering parity with R9 as soon as R8=3 (and not taking it into account as 
soon as R8=0) in the test with C9/C9.VMA can therefore also affect the update of VMA’. 
 
If C9 was 3 and R9=6 on an odd frame, then C9.VMA=7 at the beginning of the line. When R8 
goes to 0, C9.VMA is compared to R9 (the consideration of parity is cancelled). C9.VMA=7 <> 
R9=6, which leads C9 to be incremented (and therefore go to 4). If we wanted C9 to return back 
to 0, we would for example have to program R9 with C9.VMA before the end of the line (i.e. 7) so 
that the comparison between C9.VMA and R9 without parity allows C9 to return back to 0. 
 
The diagrams on the following pages describe different counting situations, when switching to 
IVM mode or when exiting IVM mode. They indicate the value of C9 considered and that available 
for the constitution of the video pointer. 
 
The IVM period for the following tests covers only a few lines of the frame. 
The values of the registers for the indicated results are: 
R9=6 (even) and R8=0 before going to 3 (or returning to 0). 
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Switching to IVM mode on CRTC 0 : 
EVEN FRAME ODD FRAME

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 R8=3 0 0 0 R8=3

0 1 2 0 1 3

0 2 4 0 2 5

0 3 6 0 3 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 0 0 0

0 1 1 R8=3 0 1 1 R8=3

0 2 4 0 2 5

0 3 6 0 3 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 0 0 0

0 1 1 0 1 1

0 2 2 R8=3 0 2 2 R8=3

0 3 6 0 3 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 0 0 0

0 1 1 0 1 1

0 2 2 0 2 2

0 3 3 R8=3 0 3 3 R8=3

0 4 8 0 4 9

0 5 10 0 5 11

0 6 12 0 6 13

0 7 14 0 7 15

0 8 16 0 8 17

0 9 18 0 9 19

0 10 20 0 10 21

0 11 22 0 11 23

0 12 24 0 12 25

0 13 26 0 13 27

0 14 28 0 14 29

0 15 30 0 15 31

0 16 0 0 16 1

0 17 2 0 17 3

0 18 4 0 18 5

0 19 6 0 19 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7  
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EVEN FRAME ODD FRAME
C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 0 0 0

0 1 1 0 1 1

0 2 2 0 2 2

0 3 3 0 3 3

0 4 4 R8=3 0 4 4 R8=3

0 5 10 0 5 11

0 6 12 0 6 13

0 7 14 0 7 15

0 8 16 0 8 17

0 9 18 0 9 19

0 10 20 0 10 21

0 11 22 0 11 23

0 12 24 0 12 25

0 13 26 0 13 27

0 14 28 0 14 29

0 15 30 0 15 31

0 16 0 0 16 1

0 17 2 0 17 3

0 18 4 0 18 5

0 19 6 0 19 7

1 0 0 1 0 1

1 2 2 1 2 3

1 4 4 1 4 5

1 6 6 1 6 7

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 0 0 0

0 1 1 0 1 1

0 2 2 0 2 2

0 3 3 0 3 3

0 4 4 0 4 4

0 5 5 R8=3 0 5 5 R8=3

0 6 12 0 6 13

0 7 14 0 7 15

0 8 16 0 8 17

0 9 18 0 9 19

0 10 20 0 10 21

0 11 22 0 11 23

0 12 24 0 12 25

0 13 26 0 13 27

0 14 28 0 14 29

0 15 30 0 15 31

0 16 0 0 16 1

0 17 2 0 17 3

0 18 4 0 18 5

0 19 6 0 19 7

1 0 0 1 0 1

1 2 2 1 2 3

1 4 4 1 4 5

1 6 6 1 6 7  
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EVEN FRAME ODD FRAME
C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 0 0 0

0 1 1 0 1 1

0 2 2 0 2 2

0 3 3 0 3 3

0 4 4 0 4 4

0 5 5 0 5 5

0 6 6 R8=3 0 6 6 R8=3

1 0 0 0 7 15

1 2 2 0 8 17

1 4 4 0 9 19

1 6 6 0 10 21

2 0 0 0 11 23

2 2 2 0 12 25

2 4 4 0 13 27

2 6 6 0 14 29

3 0 0 0 15 31

3 2 2 0 16 1

3 4 4 0 17 3

3 6 6 0 18 5

4 0 0 0 19 7

4 2 2 1 0 1

4 4 4 1 1 3

4 6 6 1 2 5

5 0 0 1 3 7  
 

Exit of IVM mode on CRTC 0 : 
EXIT IVM MODE ON EVEN FRAME

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 R8=3 0 0 0 R8=3

0 1 2 0 1 2

0 2 4 0 2 4

0 3 6 0 3 6

1 0 0 R8=0 1 0 0

1 1 1 1 1 2 R8=0

1 2 2 1 2 2

1 3 3 1 3 3

1 4 4 1 4 4

1 5 5 1 5 5

1 6 6 1 6 6

1 7 7 1 7 7

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 R8=3 0 0 0 R8=3

0 1 2 0 1 2

0 2 4 0 2 4

0 3 6 0 3 6

1 0 0 1 0 0

1 1 2 1 1 2

1 2 4 R8=0 1 2 4

1 3 3 1 3 6 R8=0

1 4 4 2 0 0

1 5 5 2 1 1

1 6 6 2 2 2

2 7 7 2 3 3  
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EXIT IVM MODE ON ODD FRAME
C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 1 R8=3 0 0 1 R8=3

0 1 3 0 1 3

0 2 5 0 2 5

0 3 7 0 3 7

1 0 1 R8=0 1 0 1

1 1 1 1 1 3 R8=0

1 2 2 1 2 2

1 3 3 1 3 3

1 4 4 1 4 4

1 5 5 1 5 5

1 6 6 1 6 6

1 7 7 1 7 7

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 1 R8=3 0 0 1 R8=3

0 1 3 0 1 3

0 2 5 0 2 5

0 3 7 0 3 7

1 0 1 1 0 1

1 1 3 1 1 3

1 2 5 R8=0 1 2 5

1 3 3 1 3 7 R8=0

1 4 4 1 4 4

1 5 5 1 5 5

1 6 6 1 6 6

1 7 7 1 7 7  
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19.8.2 CRTC 1 
 
The calculation method of C9 is based on two principles. On the one hand the equivalence in 
number of lines between the even and odd frames, and on the other hand a conservation of the 
parity of lines. 
 
Parity is fixed when R8=3 according to the parity of R9 and C9. In addition, if R9 is even (odd 
number of lines of a character), then the parity of C4 is also considered. 
 
When the IVM mode is selected, the counting is carried out in 2 stages and depends on the R9 
parity to allow for the treatment of all cases. 
 
When C0 goes to 0: 

 C9 = C9+not (R9.0) (C9 is incremented if R9 is even) 
 If (C9 and %11110) == (R9 and %11110) (test C9/R9 excluding parity) 

Then 
 C4 management (C4 ++ or C4 = 0 if C4 == R4) 
 ParityC9= ParityC9 xor (not r9.0) (inversion of parity if r9 is even) 
 C9 = ParityC9 
Else 
 C9 = C9+1+(R9.0) 
End if 

 
As soon as R8 returns to 0, the counting logic normally resumes. 
If C9 == R9 
Then 
 C9 = 0 
 C4 management (C4++ or C4=0 if C4==R4) 
Else 
 C9 = C9+1 
End if 
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19.8.3 CRTC 2 
 
It is not necessary to reprogram R4 when R8 changes to 3. This is also the case when the IVM 
mode is programmed on a vertical fraction of the frame. C4 is not skewed when R8 is updated, 
even temporarily. R5, R6 and R7 also do not need to be reprogrammed for the frame to be 
synchronized. 
 
In “Interlace” mode, C9 is compared with R9 in a conventional way to process C4. 
Another counter, C9.IVM, is used for displaying and managing video pointer updating. 
 
When R9 is odd, the video address is updated 2 times for each value of C4. 
 
We can formulate it like this on the lines located after the one where R8 has gone to 3: 
 
If (C9 == R9) 
Then  
 C9.IVM=ParityFrame 
 C9=0 ; Management of C4 (C4++ or C4=0) 
Else 
 C9.IVM=C9.IVM+2 
 C9=C9+1 
End if 
 
If (C9.IVM and &1e==R9 and &1e) 
Then 
 If (C0==R1) 
 Then  
  VMA’=VMA 
 End If 
 C9.IVM=ParityFrame 
Fin Si 
 
This management of C9.IVM takes place all the time, including when the IVM mode is not 
activated. Activation of the IVM mode during the line immediately uses C9.IVM for the 
display. 
 
The specific management of assignment of VMA' with VMA when C0==R1 is only processed when 
R8 is equal to 3. When R8 is equal to 0 or 2, this assignment takes place only when C9==R9. In 
other words, C4 can increment without VMA' being updated in IVM mode. 
 
C9.IVM is reset (0 or 1 depending on ParityFrame) twice during a C4 character, because it 
counts twice as fast as C9. Once when C9.IVM reaches R9 (out of parity) and once when C9 
reaches R9. If R9 is even, C9 reaches R9 before C9.IVM reaches R9 (out of parity) and the VMA' 
video pointer is not transferred into VMA. 
 
If, for example, C4=1 and R9 is 6 when R8=3, C9 will count from 0 to 6 whatever the parity of 
the frame. On even frames, C9.IVM will be 0, 2, 4, 6, 0, 2, 4 and on odd frames, C9.IVM will be 
1, 3, 5, 7, 1, 3, 5. However, "C9 .IVM and &1E" will only equal "R9 and &1E" (6) once (when 
C9.IVM=6 or 7) and C4 will change to 2 without the video pointer being updated. 
 



V1.4 – 01.2023 – Page 216 / 281 
 

It should also be remembered that if the IVM mode is activated on the first line of a frame (When 
C4=C9=0) while the parity was odd, then the C9 and C9.IVM are cleared on the 2nd line 
(C9.IVM=ParityFrame and C9=0). 
 
The limit value of C9.IVM is always treated "out of parity", excluding bit 0 of R9 and C9.IVM for 
the comparison test. 
 
If R8 goes from 0 to 3 when C9=5 and R9=11, then C9.IVM=10 on an even frame (C9.IVM=11 
on an odd frame). 
 
If R8 goes from 3 to 0 when C9.IVM=8 and R9=11, then C9 goes to 4 if we were on the 5th line 
or 10 if we were on the 11th line. 
 
This translation between C9 and C9.IVM is immediately considered during the creation of the 
displayed address, including during the line, from position C0 where R8 is modified. 
 
The BORDER is activated when C4=R6. If we consider that a value of C4 allows to define 2 
displayed characters, then the BORDER works in pairs. 
 
The diagrams on the following pages describe different counting situations, when switching to 
IVM mode or when exiting IVM mode. 
 
R9=7 and R8=0 before going to 3 (or returning to 0). 
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Switching in IVM Mode on CRTC 2 : 
 

EVEN FRAME ODD FRAME
C4 C9 C9-IVM R8 UPDATE C4 C9 C9-IVM R8 UPDATE

0 0 0 R8=3 0 0 0 R8=3

0 1 2 0 1 3

0 2 4 0 2 5

0 3 6 0 3 7

0 4 0 0 4 1

0 5 2 0 5 3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

1 4 0 1 4 1

1 5 2 1 5 3

1 6 4 1 6 5

1 7 6 1 7 7

C4 C9 C9-IVM R8 UPDATE C4 C9 C9-IVM R8 UPDATE

0 0 0 0 0 0

0 1 1 R8=3 0 1 1 R8=3

0 2 4 0 2 5

0 3 6 0 3 7

0 4 0 0 4 1

0 5 2 0 5 3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

1 4 0 1 4 1

1 5 2 1 5 3

1 6 4 1 6 5

1 7 6 1 7 7

C4 C9 C9-IVM R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 0 0 0

0 1 1 0 1 1

0 2 2 R8=3 0 2 2 R8=3

0 3 6 0 3 7

0 4 0 0 4 1

0 5 2 0 5 3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

1 4 0 1 4 1

1 5 2 1 5 3

1 6 4 1 6 5

1 7 6 1 7 7  
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EVEN FRAME ODD FRAME
C4 C9 C9-IVM R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 0 0 0

0 1 1 0 1 1

0 2 2 0 2 2

0 3 3 R8=3 0 3 3 R8=3

0 4 0 0 4 1

0 5 2 0 5 3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

1 4 0 1 4 1

1 5 2 1 5 3

1 6 4 1 6 5

1 7 6 1 7 7

C4 C9 C9-IVM R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 0 0 0

0 1 1 0 1 1

0 2 2 0 2 2

0 3 3 0 3 3

0 4 4 R8=3 0 4 4 R8=3

0 5 2 0 5 3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

1 4 0 1 4 1

1 5 2 1 5 3

1 6 4 1 6 5

1 7 6 1 7 7

C4 C9 C9-IVM R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 0 0 0

0 1 1 0 1 1

0 2 2 0 2 2

0 3 3 0 3 3

0 4 4 0 4 4

0 5 5 R8=3 0 5 5 R8=3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

1 4 0 1 4 1

1 5 2 1 5 3

1 6 4 1 6 5

1 7 6 1 7 7  



V1.4 – 01.2023 – Page 219 / 281 
 

EVEN FRAME ODD FRAME
C4 C9 C9-IVM R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 0 0 0

0 1 1 0 1 1

0 2 2 0 2 2

0 3 3 0 3 3

0 4 4 0 4 4

0 5 5 0 5 5

0 6 6 R8=3 0 6 6 R8=3

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

1 4 0 1 4 1

1 5 2 1 5 3

1 6 4 1 6 5

1 7 6 1 7 7

C4 C9 C9-IVM R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 0 0 0

0 1 1 0 1 1

0 2 2 0 2 2

0 3 3 0 3 3

0 4 4 0 4 4

0 5 5 0 5 5

0 6 6 0 6 6

0 7 7 R8=3 0 7 7 R8=3

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

1 4 0 1 4 1

1 5 2 1 5 3

1 6 4 1 6 5

1 7 6 1 7 7  
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Exit IVM Mode on CRTC 2 :  

EXIT IVM MODE

EVEN FRAME ODD FRAME
C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 R8=3 0 0 0 R8=3

0 1 2 0 1 3

0 2 4 0 2 5

0 3 6 0 3 7

0 4 0 0 4 1

0 5 2 0 5 3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 R8=0 1 0 1 R8=0

1 1 1 1 1 1

1 2 2 1 2 2

1 3 3 1 3 3

1 4 4 1 4 4

1 5 5 1 5 5

1 6 6 1 6 6

1 7 7 1 7 7

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 R8=3 0 0 0 R8=3

0 1 2 0 1 3

0 2 4 0 2 5

0 3 6 0 3 7

0 4 8 0 4 1

0 5 0 0 5 3

0 6 2 0 6 5

0 7 4 0 7 7

1 0 0 1 0 1

1 1 2 R8=0 1 1 3 R8=0

1 2 2 1 2 2

1 3 3 1 3 3

1 4 4 1 4 4

1 5 5 1 5 5

1 6 6 1 6 6

1 7 7 1 7 7

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 R8=3 0 0 0 R8=3

0 1 2 0 1 3

0 2 4 0 2 5

0 3 6 0 3 7

0 4 0 0 4 1

0 5 2 0 5 3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 R8=0 1 2 5 R8=0

1 3 3 1 3 3

1 4 4 1 4 4

1 5 5 1 5 5

1 6 6 1 6 6

1 7 7 1 7 7  
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EXIT IVM MODE

EVEN FRAME ODD FRAME
C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 R8=3 0 0 0 R8=3

0 1 2 0 1 3

0 2 4 0 2 5

0 3 6 0 3 7

0 4 0 0 4 1

0 5 2 0 5 3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 R8=0 1 3 7 R8=0

1 4 4 1 4 4

1 5 5 1 5 5

1 6 6 1 6 6

1 7 7 1 7 7

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 R8=3 0 0 0 R8=3

0 1 2 0 1 3

0 2 4 0 2 5

0 3 6 0 3 7

0 4 0 0 4 1

0 5 2 0 5 3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

1 4 0 R8=0 1 4 1 R8=0

1 5 5 1 5 5

1 6 6 1 6 6

1 7 7 1 7 7

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 R8=3 0 0 0 R8=3

0 1 2 0 1 3

0 2 4 0 2 5

0 3 6 0 3 7

0 4 0 0 4 1

0 5 2 0 5 3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

1 4 0 1 4 1

1 5 2 R8=0 1 5 3 R8=0

1 6 6 1 6 6

1 7 7 1 7 7  
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EXIT IVM MODE

EVEN FRAME ODD FRAME
C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 R8=3 0 0 0 R8=3

0 1 2 0 1 3

0 2 4 0 2 5

0 3 6 0 3 7

0 4 0 0 4 1

0 5 2 0 5 3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

1 4 0 1 4 1

1 5 2 1 5 3

1 6 4 R8=0 1 6 5 R8=0

1 7 7 1 7 7

C4 C9 C9-VMA R8 UPDATE C4 C9 C9-VMA R8 UPDATE

0 0 0 R8=3 0 0 0 R8=3

0 1 2 0 1 3

0 2 4 0 2 5

0 3 6 0 3 7

0 4 0 0 4 1

0 5 2 0 5 3

0 6 4 0 6 5

0 7 6 0 7 7

1 0 0 1 0 1

1 1 2 1 1 3

1 2 4 1 2 5

1 3 6 1 3 7

1 4 0 1 4 1

1 5 2 1 5 3

1 6 4 1 6 5

1 7 6 R8=0 1 7 7 R8=0

2 0 0 2 0 0

2 1 1 2 1 1  
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19.8.4 CRTC 3, 4 
 
There is no documentation on the implementation of Interlace on these AMSTRAD-emulated 
CRTC’s, however the logic is quite simple. 
 
Remember that when R9 is updated with a value less than C9, then C9 goes to 0. As on CRTC’s 0 
and 1, activating IVM mode modifies the counting of C4, and therefore requires adapting the 
values of R4, R6 and R7 according to changes in C4. 
 
In order for the IVM mode to follow a logic of even/odd lines, it is necessary to program R9 in 
the same way as on a CRTC 0. It is therefore necessary that R9 contains the number of 
character lines of character less 2. So 6 If a character is made up of 8 lines. If R9 is odd, C9's 
parity switches each time C4 changes. 
 
The following algorithm describes the management of C9 and C4: 
If C9 >= R9 
Then 
 If C4==R4 
 Then  
  C4=0 
  ParityFrame=ParityFrame xor 1 
  ParityC9=ParityFrame 
 Else  
  C4++ 
  If R9.0==1 (R9 is odd) 
  Then 
   ParityC9=ParityC9 xor 1 
  End If 
 End If 
 C9=ParityC9 
Else 
 If R8<3 
 Then  
  C9=C9+1 
 Else 
  C9=C9+2 
  C9=C9 or ParityC9 
 Enf If 
End If 
 
Example 1 :  
On line N, R9=7, C9=6, C4=0, R4=10, ParityC9=even(0), ParityFrame=even(0) 
Line N+1 C9<R9 (6<7) 
  C9=C9+2 (C9=8)  
  
Line N+2 C9>=R9 (8>7) 
  C4=C4+1 (C4=1)  
  ParityC9=1 because R9 is odd (R9=7) 
  C9=ParityC9 (C9=1) 
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In this example, frame parity and C9 parity are even (because Parityc9=ParityFrame at the start 
of the frame). The C9 lines displayed at the start of the frame are aligned on the parity of the 
frame and for C4=0, we obtain the lines C9 = 0, 2, 4, 6, 8. When C4 is incremented (to go to 1), 
ParityC9 state is reversed (because R9 is odd, this in order to balance the lines between 2 frames, 
and obtain C4 composed of 5 even lines/ 4 odd lines and C4 of 4 even lines / 5 odd lines). On the 
character C4 = 1, we will therefore have the C9=1, 3, 5, 7. 
 
Example 2 : 
On line N, R9=7, C9=7, C4=9, R4=9, ParityC9=odd(1), ParityFrame=even(0) 
Line N+1 C9>=R9 (7>=7) 
  C4=0 because C4==R4  
  ParityFrame=1  
  ParityC9=ParityFrame=1 
  C9=ParityC9=1 
  
Line N+2 C9<R9 (1<7) 
  C9=C9+2 (C9=3) 
 
In this example, we are on the last C4 of the frame. The parity of the frame is even and R9 is 
odd. During this frame, the C9s were even on the even C4 and the C9 were odd on the odd C4s. 
R4 being odd (number of even C4’s, C4= 0 to 9) we have even C9 on C4=0 and odd C9 on C4=9. 
But on the new frame, the ParityC9 state lines up with the ParityFrame state. On the new 
frame, we then have odd C9s with an even C4, and even C9 for an odd C4. 
 
When R8 goes from 0 to 3 (mode IVM on), ParityC9 state is immediately assigned with the parity 
of the current C9: ParityC9 = C9.0 The parity of the C9 can therefore be in contradiction with the 
parity of the current frame until the next frame , where parity is then aligned with the parity of 
the frame. 
 
The diagrams on the following pages describe different counting situations, when switching to 
IVM mode or when exiting IVM mode. 
 
Note: The test IVM period covers only a few lines of the frame, after VSYNC, before VSYNC and 
before C4 reaches R6. R8 is 0 during VSYNC. 
  
R9=6 or R9=7, and R8=0 before going to 3 (or going back to 0). 
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Switching to IVM mode on CRTC 3 & 4 : 
 

R9=7, ODD OR EVEN FRAME R9=6, ODD OR EVEN FRAME
C4 C9 R8 UPDATE C4 C9 R8 UPDATE

0 0 R8=3 0 0 R8=3

0 2 0 2

0 4 0 4

0 6 0 6

0 8 1 0

1 1 1 2

1 3 1 4

1 5 1 6

1 7 2 0

2 0 2 2

2 2 2 4

2 4 2 6

2 6 3 0

2 8 3 2

C4 C9 R8 UPDATE C4 C9 R8 UPDATE

0 0 0 0

0 1 R8=3 0 1 R8=3

0 3 0 3

0 5 0 5

0 7 0 7

1 0 1 1

1 2 1 3

1 4 1 5

1 6 1 7

1 8 2 1

2 1 2 3

2 3 2 5

2 5 2 7

2 7 3 1

C4 C9 R8 UPDATE C4 C9 R8 UPDATE

0 0 0 0

0 1 0 1

0 2 R8=3 0 2 R8=3

0 4 0 4

0 6 0 6

0 8 1 0

1 1 1 2

1 3 1 4

1 5 1 6

1 7 2 0

2 0 2 2

2 2 2 4

2 4 2 6

2 6 3 0  
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R9=7, ODD OR EVEN FRAME R9=6, ODD OR EVEN FRAME
C4 C9 R8 UPDATE C4 C9 R8 UPDATE

0 0 0 0

0 1 0 1

0 2 0 2

0 3 R8=3 0 3 R8=3

0 5 0 5

0 7 1 7

1 0 1 1

1 2 1 3

1 4 1 5

1 6 1 7

1 8 2 1

2 1 2 3

2 3 2 5

2 5 2 7

C4 C9 R8 UPDATE C4 C9 R8 UPDATE

0 0 0 0

0 1 0 1

0 2 0 2

0 3 0 3

0 4 R8=3 0 4 R8=3

0 6 0 6

0 8 1 0

1 1 1 2

1 3 1 4

1 5 1 6

1 7 2 0

2 0 2 2

2 2 2 4

2 4 2 6  
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Exit  IVM Mode on CRTC 3 & 4 : 
 

EVEN FRAME ODD FRAME

EXIT IVM MODE, R9=7 EXIT IVM MODE, R9=6
C4 C9 R8 UPDATE C4 C9 R8 UPDATE

0 0 R8=3 0 1 R8=3

0 2 R8=3 0 3 R8=3

0 4 R8=3 0 5 R8=3

0 6 R8=3 0 7 R8=3

0 8 R8=3 1 1 R8=0

1 1 R8=0 1 2

1 2 1 3

1 3 1 4

1 4 1 5

1 5 1 6

1 6 2 0

1 7 2 1

2 0 2 2

C4 C9 R8 UPDATE C4 C9 R8 UPDATE

0 8 R8=3 0 1 R8=3

1 1 R8=3 0 3 R8=3

1 3 R8=3 0 5 R8=3

1 5 R8=3 0 7 R8=3

1 7 R8=3 1 1 R8=3

2 0 R8=0 1 3 R8=0

2 1 1 4

2 2 1 5

2 3 1 6

2 4 2 0

2 5 2 1

2 6 2 2

2 7 2 3

C4 C9 R8 UPDATE C4 C9 R8 UPDATE

0 0 R8=3 0 1 R8=3

0 2 R8=3 0 3 R8=3

0 4 R8=3 0 5 R8=3

0 6 R8=3 0 7 R8=3

0 8 R8=0 1 1 R8=3

1 0 1 3 R8=3

1 1 1 5 R8=0

1 2 1 6

1 3 2 0

1 4 2 1

1 5 2 2

1 6 2 3

1 7 2 4  
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EVEN FRAME EVEN FRAME

EXIT IVM MODE, R9=7 EXIT IVM MODE, R9=6
C4 C9 R8 UPDATE C4 C9 R8 UPDATE

0 0 R8=3 0 4 R8=3

0 2 R8=3 0 6 R8=3

0 4 R8=3 1 0 R8=3

0 6 R8=0 1 2 R8=3

0 7 1 4 R8=3

1 0 1 6 R8=0

1 1 2 0

1 2 2 1

1 3 2 2

1 4 2 3

1 5 2 4

1 6 2 5

1 7 2 6

C4 C9 R8 UPDATE C4 C9 R8 UPDATE

0 2 R8=3 0 0 R8=3

0 4 R8=3 0 2 R8=3

0 6 R8=3 0 4 R8=3

0 8 R8=3 0 6 R8=3

1 1 R8=3 1 0 R8=3

1 3 R8=0 1 2 R8=0

1 4 1 3

1 5 1 4

1 6 1 5

1 7 1 6

2 0 2 0

2 1 2 1

2 2 2 2

C4 C9 R8 UPDATE C4 C9 R8 UPDATE

0 4 R8=3 0 2 R8=3

0 6 R8=3 0 4 R8=3

0 8 R8=3 0 6 R8=3

1 1 R8=3 1 0 R8=3

1 3 R8=3 1 2 R8=3

1 5 R8=0 1 4 R8=0

1 6 1 5

1 7 1 6

2 0 2 0

2 1 2 1

2 2 2 2

2 3 2 3

2 4 2 4  
 



V1.4 – 01.2023 – Page 229 / 281 
 

20 VIDEO POINTER:REGISTERS R12/R13 

20.1 GENERAL 
 
These two registers allow for the definition, in conjunction with C9, of the base memory address 
given by the CRTC to the GATE ARRAY for it to display its characters. 

20.2 VIDEO POINTER CALCULATION 
 
 

 
 
When the VMA/VMA' update conditions are met, then VMA or VMA'=R12/R13. 
See Chapter 17.4, page 172. 

  

CRTC-R12 CRTC-R13

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

CRTC-VMA 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VRAM Ptr 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 0

CRTC-C9 

Bit 0 Always at 0 because the CRTC works in words

Bits 1 to 10 From bits 0 to 9 of CRTC-VMA

Bits 11 to 13 From bits 0 to 2 of C9

Bits 14 and 15 From bits 12 and 13 of CRTC-VMA
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20.3 UPDATE CONDITIONS 

20.3.1 CRTC 0 
When the counters C4, C9 and C0 change to 0, the video pointers (VMA' & VMA) are initialized 
with R12/R13. 
 
Note that if the "frames" are 2 µsec (R4=R9=0 and R0=1) then C4 passes through the values 0 
and 1 alternately, allowing R12 and/or R13 to be considered every 4 µs. 
(This is the triggering of the "R5" additional line management, which generates a line despite 
R5=0, and therefore increments C4 despite R4=0). 
 
The updates of R12 and R13 are considered immediately. 
 

 
 
On CRTC 0, VMA' & VMA are loaded with R12/R13 if C4=0 and C0=0. 

20.3.2 CRTC 1 
When C0 and C9 go to 0 and C4=0, the VMA video pointer is initialized with R12/R13. 
 
Note that the update of both R12 and R13 are immediate. 
 
If the conditions are met, it is possible to change the offset on frames of 1 µs (R0=0). 
 

 
 
On CRTC 1, VMA is loaded with R12/R13 while C4=0. 
 
This particularity gives a certain flexibility because it is possible to modify the address over a 
period much greater than all the other CRTC’s. To allow for compatibility with CRTC 1, it is 
therefore advisable not to change the address for the next frame too early, when C4=0. We can 
for example see this bug in terms of the display of vegetation in the game "007 The Living 
Daylights" (Domark, 1987). The address of the score zone is scheduled too early and replaces 
the address of the decor area containing the vegetation. 
  

OFFSET=#30xx

C0: 55 56 57 58 59 60 61 62 63 0 1 2 3 4

R12=#10 OUT R12,#30

OFFSET=#10xx

C0: 55 56 57 58 59 60 61 62 63 0 1 2 3 4

R12=#10 OUT R12,#30

OFFSET=#30xx

C0: 55 56 57 58 59 60 61 62 63 0 1 2 3 4

R12=#10 OUT R12,#30

OFFSET=#30xx

C0: 55 56 57 58 59 60 61 62 63 0 1 2 3 4

R12=#10 OUT R12,#30
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20.3.3 CRTC 2 

When counters C4, C9 and C0 change to 0, pointer VMA' is initialized with R12/R13. 

Unlike other CRTC’s, it is VMA' which is updated with R12/R13. 

As a reminder, VMA' is the transient pointer updated when C0 reaches R1, and which updates 

VMA when C9=R9. 

If the update of the R12/R13 registers is immediate, the consideration of the new line can no 

longer take place when C0 exceeds R1 

 

On CRTC 2, VMA' is loaded with R12/R13 if C4=0 and C0=0. 

20.3.4 CRTC 3 & 4 
When the counters C4, C9 and C0 change to 0, the video pointers (VMA' & VMA) are initialized 
with R12/R13. 
 

 
 
On CRTC 3 and 4 VMA' & VMA are loaded with R12/R13 if C4=0 and C0=0. 

20.4 DEADLINES 
 
See the chapter on the R0 register for the precise detail of the update of the video pointer. 

  

R1 OFFSET=#30xx

C0: 35 36 37 38 39 40 41 … 63 0 1 2 3 4

R12=#10 OUT R12,#30

R1 OFFSET=#30xx

C0: 35 36 37 38 39 40 41 … 63 0 1 2 3 4

R12=#10 OUT R12,#30

R1 OFFSET=#10xx

C0: 35 36 37 38 39 40 41 … 63 0 1 2 3 4

R12=#10 OUT R12,#30

OFFSET=#30xx

C0: 55 56 57 58 59 60 61 62 63 0 1 2 3 4

R12=#10 OUT R12,#30

OFFSET=#10xx

C0: 55 56 57 58 59 60 61 62 63 0 1 2 3 4

R12=#10 OUT R12,#30
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20.5 OVERSCAN-BITS 
 
The construction of the memory address is specific insofar as: 

 Bits from C9 are "immovable" in the final pointer. 

 The internal address counter counts on 14 bits where bits 10, 11 and 12 are not "used" 
(at least in appearance). 
 

 

When R12 and R13 are transferred to VMA/VMA', VMA is used to display the characters. 
 
Although bits 11, 12 and 13 of the final pointer come from C9, the VMA counter counts on 14 bits. 
Also, when the counting reaches the end of 10 address bits, bits 2 and 3 coming from R12 take 
part in the counting, even if they are not used directly for the video pointer. 
 
If these bits are both at 1, this causes a report on bits 4 and 5 of R12. 
These 2 bits represent bits 14 and 15 of the video pointer. 
 
The consequence is therefore a change of page when the end of the 10 bits is reached. 
 
It is therefore possible to display an image of more than 16k without resorting to a rupture with 
this method. 
 
 

  

R12 R13

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

p p o o a a a a a a a a a a

p p Start address o o Managed size

0 0 &0000 0 0 16 k

0 1 &4000 0 1 16 k

1 0 &8000 1 0 16 k

1 1 &C000 1 1 32 k

9 8 7 6 5 4 3 2 1 0

Start Addr + a a a a a a a a a a
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21 READ REGISTERS. 

21.1 GENERAL 
There are two types of reading possible on the CRTC’s. 
 
The first type aims to retrieve the value contained in certain CRTC registers. According to the 
CRTC’s, this reading does not concern the same registers and the same ports. 
 
The purpose of the second type is to retrieve the status of certain internal CRTC operations in 
order to communicate on the fulfilment of various conditions. Reading statuses does not exist on 
all CRTC’s and does not use the same type of reading. 

21.2 READING THE CONTENTS OF THE REGISTERS 
In order to be able to read the contents of a register, it must first of all be selected. 
As a reminder, an I/O port is selected with the I/O address &BC00. 

21.2.1 CRTC 0 
Only the 5 least significant bits of the register number are considered. The other 3 most 
significant bits are ignored. This CRTC is able to read the contents of the following registers on 
the port located at &BF00: 

 
 
Note : The cursor is not managed on the CPC. However, it is perfectly possible to store values in 
R14 and R15 and then read them back. 
An attempt to read another register (0 to 255) returns the value 0. 

21.2.2 CRTC 1, 2 
Only the 5 least significant bits of the register number are considered. The other 3 most 
significant bits are ignored. These CRTC’s can read the contents of the following registers on the 
port located at &BF00: 

 
 
Note : The cursor is not managed on the CPC. However, it is perfectly possible to store values in 
R14 and R15 and then read them back. 
 
For CRTC 2, an attempt to read another register (0 to 255) returns the value 0. 
For CRTC 1, an attempt to read another register returns 0, except for register 31 (and all values 
whose bits 0-4 are 1) which returns a non-zero value (I got 127 or 255). This register was 
probably defined by UMC but not used on this model. 

Register Definition Unit r/w 7 6 5 4 3 2 1 0

R12 Display start address (High) Pointer r/w 0 0

R13 Display start address (Low) Pointer r/w

R14 Cursor address (High) Pointer r/w 0 0

R15 Cursor address (Low) Pointer r/w

R16 Light Pen (High) Pointer r 0 0

R17 Light Pen (Low) Pointer r

Register Definition Unit r/w 7 6 5 4 3 2 1 0

R14 Cursor address (High) Pointer r/w 0 0

R15 Cursor address (Low) Pointer r/w

R16 Light Pen (High) Pointer r 0 0

R17 Light Pen (Low) Pointer r
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21.2.3 CRTC 3, 4 
 
For CRTC’s 3 and 4, only the 3 least significant bits of the selected register number are considered 
to read a register according to the following table. 
  
Reading register 4 therefore also means reading register 12 (8+4) or 20 (16+4) 
Reading a CRTC register is possible on two I/O addresses indistinctly: &BE00 and &BF00 
 
Note that the “Register Status” port has the same function as the “Register Read” port. These 
CRTC’s nevertheless manage an impressive collection of statuses. The designers used the R10 and 
R11 registers for this purpose (see next chapter on the statuses). 
 
These CRTC’s can read the contents of the following registers: 

 
 
Note : The cursor is not managed on the CPC. However, it is perfectly possible to store values in 
these registers and then read them back, including both CRTC’s 3 and 4. 

21.3 READING STATUS 

21.3.1 GENERAL 
 
Only CRTC 1 has a status register present on the specific port &BE00. 
This port is a mirror of the read port for CRTC’s 3 and 4, which handle status differently. 
 

 
  

Nb Register Definition Unit r/w 7 6 5 4 3 2 1 0

0 R16 Light Pen (High) Pointer r 0 0

1 R17 Light Pen (Low) Pointer r

2 R10 Asic CRTC Status 1 Function r

3 R11 Asic CRTC Status 2 Function r

4 R12 Display start address (High) Pointer r/w

5 R13 Display start address (Low) Pointer r/w

6 R14 Cursor address (High) Pointer r/w 0 0

7 R15 Cursor address (Low) Pointer r/w

CRTC 7 6 5 4 3 2 1 0 L

0 x x x x x x x x High impedance 1 Light pen reading

1 x L V x x x x x 0 R16 / R17 registers can be read

2 x x x x x x x x High impedance V

3 d d d d d d d d 1 BORDER R6 is true

4 d d d d d d d d 0 BORDER R6 is false

d : Mirror of BF00 port (read of CRTC reg)

Other CRTC 7 6 5 4 3 2 1 0 U

UM6845E U L V x x x x x 1 Update event

R6545E U L V x x x x x 0 Reg R31 has been read / written by the MPU



V1.4 – 01.2023 – Page 235 / 281 
 

21.3.2 CRTC 0, 2 
 
These two CRTC’s do not have a status register. 
Therefore, it is not recommended to use the value read on port &BE00 on CRTC’s 0 and 2, 
particularly to test the type of CRTC (risk of Candy Crush). 
My CPC CRTC 2 always returns 255 read on this port. 
My CPC CRTC 0 randomly returns 255 or 127 on this port. 

21.3.3 CRTC 1 
The input/output address of the status register on this CRTC is &BE00. 
 
On CRTC 1, bit 5 of the Status register is updated when C0=R0 according to the BORDER R6 
conditions (False: C4=C9=C0=0 / True: C4=R6 & C9=C0=0). 
 
The bit is 1 when the BORDER R6 condition is true. 
The bit is 0 when the BORDER R6 condition is false. 
 
This does not necessarily mean that BORDER or CHARACTERS are displayed, because this 
evaluation is done when C0=R0. 
 
But BORDER can already be displayed if the BORDER R1 condition is true. 
 
Note also that if R6 is positioned at 0 (while C4>0) to generate BORDER, this state is not 
detected. The value 0, like in other CRTC 1 registers, is handled in a special way. In other words, 
if R6=0 while C4>0 and the status is 0 (Characters displayed), bit 5 of the status register will 
continue to be 0. 
 
The diagrams below describe the exact transition to 1 or 0 of this status bit. 
 

 
 
  
 
 
 

  

C4=C9=0

C0 from Vsync 3A 3B 3C 3D 3E 3F 0 1 2 3 4 5 6 7 STATUS

When C0=0 on this line: C4=C9=0 IN A,(C) 00100000

IN A,(C) 00100000

IN A,(C) 00100000

IN A,(C) 00000000

C4=R6, C9=0

C0 from Vsync 3A 3B 3C 3D 3E 3F 0 1 2 3 4 5 6 7 STATUS

When C0=0 on this line : C4=R6, C9=0 IN A,(C) 00000000

IN A,(C) 00000000

IN A,(C) 00000000

IN A,(C) 00100000
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21.3.4 CRTC 3, 4 
The designers of these ASIC’s used R10 and R11 as status registers in order to trace a large 
number of events. It is therefore possible to wait for very precise events and to calculate quite 
simply the value of all the CRTC registers which are read-only. 
 
The first identification of these statuses was made on CPC PLUS by Kevin THAKER (ArnoldEmu) 
who refers to them here: http://cpctech.cpc-live.com/docs/cpcplus.html  
However, it was a mistake to state that these statuses do not exist on CRTC 4. 
 
Reading these statuses requires great precision because several bits only change state for 1 µsec. 
In this case, if the status register is read with an INI or IND instruction, the I/O is read and 
written in RAM during the 4th µsecond of the instruction (which takes 5). When the register is 
read with the instruction IN reg8,(C), the I/O is read during the 4th µsecond of the instruction 
(which takes 4). It is therefore necessary to perfectly calibrate the read instructions so that the 
4th µsecond is located at the exact moment when the status is set by the CRTC. 
 
Note : Since bit 3 of the register number is forced to 1, reading registers R2 and R3 is equivalent 
to reading R10 and R11. 

21.3.4.1 Definition of STATUS 1 
 

STATUS 1 (CRTC-R10)

Bit number Bit Value Event

0 1 C0=R0 

1 0 C0=R0/2 

2 0 C0=R1-1 (if R0>=R1)

3 0 C0=R2

4 0 C0=R2+R3

5 0 R3h>0 : C0=0..R0 on the line R3h from Vsync (C4=R7)

1 R3h=0 : C0=0..R0 over 15 lines from Vsync (C4=R7)

6 1 Always 1

7 0 C0=0..R0-1 : VMA.Lsb=0xFF

0 C0=R0 : VMA'.Lsb=0x00 (same cond if C0=R0=0)  
 
As a reminder, VMA’ is loaded with VMA when C0==R1 and C9==R9. 
Bit 7 is used to indicate that on the next CRTC character, the less significant byte of the video 
pointer will be reset to 0 (either from an overrun on the current VMA pointer, or when this pointer 
is going to be reloaded from VMA' at the end of the line) 
 
 
  

http://cpctech.cpc-live.com/docs/cpcplus.html
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21.3.4.2 Definition of STATUS 2 
 

STATUS 2 (CRTC-R11)

Bit number Bit Value Event

0 0 C4=R4 and C9=R9 and C0=R0 : Last char of screen

1 0 C4=R6-1 and C9=R9 and C0=R0 : Last char displayed

2 0 C4=R7-1 and C9=R9 and C0=R0 : Last char before Vsync

3 0/1 Timer 16 CRTC frames. See below

4 1 Always 1

5 0 C9=R9 : C0=0 to R0

6 0 Always 0

7 1 (C9=R9 and C0=R0) or (C9=0 and C0=0 to R0-1)  
 
Bit 3 of status 2 toggles from 1 to 0 and vice versa over the entire frame every 16 frames. 
With a RLAL, for example, this status toggles every 16 lines. 

21.4 DUMMY REGISTER 
 
Among some of the myths and legends about CPC CRTC’s is the existence of Register 31, called 
the DUMMY REGISTER. 
 
If register 31 does exist on the CRTC UM6845E from the company UMC, it does not exist on the 
CRTC UM6845R (type 1), nor on the CRTC UM6845 (type 0). 
 
On the CRTC UM6845R, bit 7 of the status register which refers to it is simply unused. 
On the CRTC UM6845, the status register itself does not exist (hence finding its bit 7…). 
 
However, it should be noted that reading this register on a CRTC UM6845R (type 1) 
returns a non-zero value, unlike the other read-only registers. 
 
On the CRTC UM6845E (excluding CPC), register 31 is related to the transparent mode. 
 
The management of this mode also uses bits 6 and 7 of register 8 in addition to bit 7 of the status 
register. I will not dwell on this subject, which is as interesting as the programming of the 
EF9345P… 
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22 FULLSCREEN & CENTERING 

22.1 FOREWORD 
 
CPC CRT screens are convex with quite a noticeable screen curvature. 
Because of this shape and the deflection angle of the electron beam, the pixels at the edges are 
larger than those at the centre. 
 
In addition, the case that surrounds the cathode ray tube has rounded corners and edges that 
"roughly" follow the shape of the cathode ray tube, but however masks a few additional pixels in 
passing. The data given in this chapter corresponds to the general case. Due to the analog nature 
of the screens, there may be some small variations in size or positioning between 2 screens. Let's 
not forget that the CPC is over 30 years old. 
 
You can see the differences of several horizontal pixels and vertical lines between the centre of 
the screen and the edges of the latter. 
 
Vertically, a difference of 5 lines can exist between the first line visible in a corner and the first 
line visible in the middle of the horizontal axis of the screen: 
 

 
 
Horizontally, a difference of almost 1 CRTC character can be observed between a column located 
at the top or bottom side corner of the screen and this same column in the middle of the vertical 
axis of the screen (line 136): 
 
Middle right columns.   Same columns in lower right corner. 

    
  
It is by counting the number of horizontal characters and vertical lines from the middle of the 
horizontal and vertical axes of the screen that we can determine the values to be programmed to 
ensure that all the pixels visible on the screen are "filled". However, keep in mind that many pixels 
in these rows and columns will not be visible. 
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22.2 HORIZONTAL FULLSCREEN  
 
On a CTM monitor, one can visualize a horizontal line of 48 CRTC characters, which represents 
96 bytes (192 pixels mode 0, 384 pixels mode 1, 768 pixels mode 2). 
 
The centering of a horizontal line depends on the HSYNC signal (See Chapter 15, page 135). 
 
The first character visible on the left is the 15th character from position C0=R2. 
 
To obtain an exact centering on a line of 64 µsec (R0=63), R2 must be set to 50 (with R3>=6) to 
display C0=0 at the extreme left of the screen. 
 
Depending on the H-HOLD setting of the monitor (accessible via a small flat screwdriver in the 
small hole at the rear left of the monitor), the BORDER may appear on the right or on the left if 
the line size is set to 48 characters. 
 
If R3 is less than 6, then the frame is shifted to the right on the screen (See Chapter 14.4, page 
122). 

22.3 VERTICAL FULLSCREEN 
 
On a CTM monitor, you can see 272 vertical lines at 50 Hz (and much more with "homemade" 
interlace by lowering the frequency, but that's another subject). 
 
The image begins to be visible from the 34th line, which is the second line of the 5th character 
of 8 lines from the start of the VSYNC. (See Chapter 15, page 148).  
 
If R7 is positioned with 35 while R4=38 (and R5=R8=0), then 33 “not visible” lines will be 
generated from the VSYNC, and the line C4=0/C9=1 will be partially visible. 
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23 TIPS AND TRICKS 
 
As soon as it is necessary to modify the registers of several circuits, the 64 µsec of a line is often 
an important constraint to respect. Several tricks save valuable µsec. The main optimizations 
reside in the economical use of Z80A registers, the method of access to Inputs-Outputs or the 
management of iterations. These 3 approaches can be combined at will. 

23.1 R12/R13 UPDATES 
When it is a question of frequently modifying the values of the registers of certain circuits, it is for 
example not always necessary to modify the 2 registers R12/R13 when certain tricks are time 
critical, in general for demos. 
 
It is possible to affect only one or the other, or even separately depending on the memory 
architecture of what must be displayed. 
 
The access mode to the CRTC, which involves the prior selection of a register, is very CPU 
intensive. (Everything being relative…). An option to minimize the access time to these two 
registers is to use the OUT (nn),A instruction with all the reservations surrounding the use of this 
malicious instruction on a CPC 
 
Example 1 : 
The following code, for example, is used to initialize the pair R13/R12 quickly (considering of 
course the preloading of the registers). The principle is to allow the selection of a CRTC register 
without manipulating B several times to switch to the data writing function of the circuit. 
Prerequisite : B=&BC, A=12, C=13, H=R12, L=R13     
(optionally, SP=&BABA)     
OUT (C),C  ; Select R13 
INC B   ; B=Crtc Data Address 
OUT (C),L  ; R13=L 
OUT (#FF),A ; Select R12 (12="combo" CRTC Reg Select & Value Reg Select) 
OUT (C),H  ; R12=H 
 
It is possible to select CRTC registers 8, 4 and 0 with this method. However, the last two values 
also send the value of register A to port A of the PPI  
 
Example 2 : R0=0  
LD B,#BD  ; B=Crtc Data Address 
XOR A 
OUT (#FF),A ; Select R0 
OUT (C),A   ; or OUT(C),0 (See Chapter 23.4) 
 
In the context where only registers 12 and 13 of the CRTC are updated several times a tip 
consists in swaping the order of updating registers between each line in order to save the 
selection of one register. This allows to select one register by line and updare this register 2 
times. (R12, R13 / R13, R12 / R12, R13 / ...). 
 
This is the case for example when you modify the 2 registers on each line in the context of a line 
to line rupture (RLAL) on the CRTC 0, 1, 3 and 4: 
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Initial context : Selection R12 
First line  : Update R12 / Selection R13--Update R13 
Second line  : Update R13 / Selection R12--Update R12 
Third line  : Update R12 / Selection R13--Update R13 
And so on... 
 
Note: This principle of CPU gain for the selection of an index when several registers of the same 
circuit are sequentially updated is applicable to other circuits which manage a register selection 
index, such as the Gate Array or the AY- 3-8912. 
 
Thus, for example, if it is necessary to change the color of several pen on each line, it is wise to 
order the order of the "common" Pen between each line: 
 
First line : Select Pen 1--Color Pen 1 / Select Pen 2--Color Pen 2 / Select Pen 3--Color Pen 3 
Second line : Color Pen 3 / Select Pen 1--Color Pen 1 / Select Pen 2--Color Pen 2 
Third line : Color Pen 2 / Select Pen 3--Color Pen 3 / Select Pen 1--Color Pen 1 
And so on... 

23.2 COMMON USE OF REGISTER(S) 
In an effort to save valuable Z80A registers, a few tricks are to put the value of the Input/Output 
ports or the value of the select registers into registers that also serve as pointers to tables. 
However, this limits access to tables whose most significant byte of the address, for example, is a 
valid value for the circuit. 
However, this poses a significant constraint on the organization of memory. 
For example, it is possible to place in memory at addresses &BC00, &BD00, &BE00, &7F00 tables 
containing useful values. 
 
Example 1 : 
LD B,#BD  ; BC is both CRTC write port 
LD A,(BC)  ; and pointer to the value to write (indexed by C here) 
OUT (C),A 
  
Example 2: 
LD B,#BE  ; BE is CRTC write port (via OUTI) 
LD H,B  ; But also pointer to the value to write (indexed by L) 
OUTI   ; HL being also incremented in the operation 
 
This sport can also apply to selection registers, such as 12 when it comes to modifying R12 for 
example. 
LD B,#BC 
LD H,#0C  ; HL is a pointer to a table between #0C00 and #0CFF 
OUT (C),H  ; But H also serves as a CRTC register selector 
INC B  
INC B 
OUTI   ; The value present at address #0Cxx is sent to R12 
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23.3 WAITING VSYNC 
It is sometimes interesting that B is already preloaded at the end of a "traditional" VSYNC wait. It 
is possible to use the IN A,(#FF) instruction to avoid B being involved, but this involves reloading 
A with the I/O address of Port B (PPI) at each iteration: 
WSYNC LD A,#F5      LD B,#F5 
  IN A,(#FF)   WSYNC IN A,(C) 
  RRA      RRA 
  JR NC,WSYNC    JR NC,WSYNC 
 
By loading A using another preloaded 8-bit register, the loop then occupies the same time as a 
“standard” loop with B because IN A,(#FF) executes in 3 µseconds  

23.4 ZERO VALUE 
There is an interesting undocumented instruction (#ED,#71) that sends the value 0 to the I/O 
address present in register B: OUT (C),0.  
In principle, the value sent by this instruction depends on the type of MOS logic of the Z80A. On a 
NMOS variant that is used in the CPCs, 0 is sent, however on the Z80 CMOS variant, it is the value 
255 which is sent. 
Example : 
LD BC,#BC09 ; See Chapter 12.4.2, page 92 
OUT (C),C 
INC B 
OUT (C),C   
OUT (C),0 
 

23.5 OUTI/OUTD AND STATUS REGISTER 
The official documentation is incorrect regarding the N and C bits of the Z80A F register for the 
OUTI and OUTD instructions. (This is probably also the case for OTIR and OTDR, but of limited 
interest on the CPC). When the sum of the value sent (in HL) to the circuit and the register L (post 
processing (incremented/decremented)) is greater than 255, then N=C=1. This potentially allows 
to test the end of a table without a counter, but it creates a constraint on the address of the table. 

23.6 SELF-MODIFIED CODE 
When a code is executed in RAM, it has an advantage compared to a code executed in ROM: it 
can modify its own object code. This has advantages in terms of code length and CPU. This is 
particularly the case when it comes to storing the value of a counter, which requires a variable. 
Example of a function managing a counter: 
Ram/Rom: 
   LD A, (MyCOUNTER)  ; Loads the value of the counter in A 
   DEC A    ; Modifies the counter 
   LD (MyCOUNTER), A  ; Back up the counter value 
   RET 
MyCOUNTER  DB 100 
 
Ram: 
MyCOUNTER LD A, 100    ; Loads the value of the counter in A 
   DEC A    ; Modifies the counter 
   LD (MyCOUNTER+1), A  ; Back up the counter value 
   RET  
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The address of the MyCOUNTER variable is here present directly in the LD A,N operand (this 
instruction is coded #3E, N). 
Operand is therefore 1 byte from the start of the opcode. 
 
Depending on the instructions, the operand's offset to be modified may vary: 
For an LD H,value the operand is located at Offset+1 of the start of the instruction. 
For an LD IXH, value, the operand is located at Offset +2 of the start of the instruction. 
 
Self-modification therefore involves considering the relative offset of operands in the instructions 
concerned. 
 
Methodologies exist to avoid using "MyCOUNTER + offset" everywhere in a source because it can 
cause maintenance problems because it involves to modify the source everywhere where 
MyCOUNTER is used. (for example an LD H, value is relpaced by LD IXH, value). 
 
The most used solution is to use an EQU directive which defines the variable relating to the code. 
In the previous example, we would have:  
 
   LD A, 100   ; Loads the value of the counter in A 
MyCOUNTER  EQU $ -1  
   DEC A   ; Modifies the counter  
   LD (MyCOUNTER), A ; Back up the counter value 
   RET 
 
MyCOUNTER then points to the assembly address (indicated conventionally by the $) less 1. 
Assemblers can undoubtedly go further by offering a directive combined with EQU capable of 
providing the relative offset of the instruction operands according to their type. 
Another example of an operand update on 16 bits is indicated in chapter 23.8 with the backup of 
the SP register. 
 
The self-modification also has the interest of being able to modify the instructions themselves. 
There are many possibilities. 
 
Example 1: Inhibit or activate treatment. 
  ; 
  ; Activate treatment 
  ; 
  LD A,#37  ; “SCF” opcode 
  LD (F_BitC),A 
  ; 
  ; Deactivate treatment 
  ; 
  LD A,#B7  ; “OR A” opcode 
  ld (F_BitC),A 
   
  ... 
  ... 
F_BitC SCF 
  JR C,Treatment1 / CALL C, Treatment1 / RET NC 
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A modern assembler should allow to recover the opcodes of an instruction. 
For example with an "Opcode (" instruction ") directive. 
Managing an instruction permutation could then be written: 
 
   LD A,(F_BitC)      ; 4 µs 
   XOR (Opcode(« SCF ») xor Opcode(« OR A»)) ; 2 µs 
   LD (F_BitC),A      ; 4 µs 
   ... 
   ... 
F_BitC  SCF/OR A       ; 1 µs 
   JR C, Treatment      ; 3/2 µs 
 
The XOR is used here to swap from #37 to #B7 and vice versa. 
It is also perfectly possible to modify the branching instruction itself. 
For example transform a JR C (#38) into JR NC (#30). 
Or even the branching value located in the operand behind the Opcode for a branching instruction 
(JR, JP, CALL). 
 
If the permutation is a flip-flop treatment, we can also write: 
 
   LD A,%01010101   ; 2 µs 
FlipFlopSt  EQU $-1 
   RRCA      ; 1 µs 
   LD (FlipFlopSt),A    ; 4 µs 
   JR C,Treatment    ; 3/2 µs 
 
It is possible for example to reverse the counting direction of a counter by transforming an INC 
into DEC, or even by deactivating the count via a NOP: 
 
   LD A,100   ; Load the value of the counter in A 
MyCounter   EQU $-1 
CounterFunc DEC A   ; DEC A / INC A / NOP 
   LD (MyCounter),A ; Save the counter value 
   RET 
 
Self-modification allows to easily reverse counting instructions, in order to avoid tests or the 
writing of a 2nd function: 
 

 A XOR 1 on the opcodes INC A, INC B, INC C, INC D, INC E, INC H, INC L allows to 
transform them respectively into DEC A, DEC B, DEC C, DEC D, DEC E, DEC H, DEC L 
and Vice-Versa. 
 

 A XOR 8 on the opcodes INCBC, INC DE, INC HL, INC SP allows to transform them 
respectively into DEC BC, DEC DE, DEC HL, DEC SP and Vice-Versa. 

 
In a tense context with I/O, it is common to have multiple OUT (C),reg8. 
It is interesting to remember here that these instructions takes 2 bytes in RAM and all start with 
the #ed prefix. It is possible to easily modify the affected register by modifying the byte which 
follows the prefix #ed (#79=A/#41=B/#49=C/#51=D/#59=E/#61=H /#69=L). 
The #71 value allows to send the value 0.( (with the Z80A mounted in the CPCs). 
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In the particular case of the instruction OUT (C),C self-modification allows to transform the 
instruction. It is for example possible to neutralize this instruction by modifying the prefix with a 
neutral instruction (NOP or LD Reg8, Reg8) but this presents the disadvantage of modifying the 
duration of the instruction, which then goes from 4 to 2 µsec. 
 
In a fixed time context, the complete instruction can be replaced by #232B (INC HL/DEC HL). It is 
not recommended to modify the B register with #FF, because some CPC extensions had the 
brilliant idea of using only C to identify. 
 
Replacing an OUT(C),C with an IN(C) (#ED70) is not recommended since an IN on CPC can cause 
an OUT with the value on the bus. 
 
Finally, to close this chapter of the modified instructions, it is important to cite the ADD HL, BC 
(OPCODE #09) instruction that it is possible to transform into ADD HL, SP (OPCODE #39) and 
Vice-Versa. This can be very useful for a "unrolled" sprite routine when BC=#800 and 
SP=#C800+(R1X2). This avoids creating 8 different sprite display routines to manage all cases of 
a sprite higher than 8 lines and likely to be displayed on any line of a frame. 

23.7 ITERATIONS AND UNROLLED CODE 
 
When no further optimization is possible, a widely used method is to eliminate loop branch tests 
and instructions. However, this can lead to a significant increase in the ram required. The 
"unrolling" of the code can take place at the very level of the Z80A instructions, such as LDIR or 
LDDR. 
Example: 
LD BC,5   ;  3 µs     
LD HL,Source_pointer ;  3 µs   LD HL,Source_pointer ;  3 µs 
LD DE, Dest_pointer ;  3 µs   LD DE,Dest_pointer ;  3 µs 
LDIR    ; 29 µs ((6x4)+5)  LDI    ;  5 µs 
    ------    LDI    ;  5 µs 
      38 µs   LDI    ;  5 µs 
        LDI    ;  5 µs 
        LDI    ;  5 µs 
            ----- 
              31 µs  
 
Each "LDI" uses 1 µs less than if the operation had taken place within a "LDIR". 
But each µSec gained thus costs 2 code bytes (an LDI is coded "#ED,#A0"). 
This can therefore be very consumer in memory (Rom/Ram) available. 
 
Note: When the code works in RAM, it is however possible to create a “code that generates code” 
rather than using assembler “macros” that do this work. In the example above, some code could 
generate the LDIs to run in ram. This allows to obtain less voluminous object codes, and to put 
into perspective the notion of memory resource sharing. The area dedicated to generated code 
that can be reused by other functions. 
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An alternative to "all or nothing" consists in minimizing the amount of RAM necessary for the 
"unrolled" code by agreeing to lose a little CPU to "loop" a little less often. It is therefore a 
question here of making a ratio between the consumed RAM and the won CPU. 
 
Example : 
  LD BC,2000   ; 3 µs     ; 3 bytes 
  LD HL,Source_pointer ; 3 µs     ; 3 bytes 
  LD DE,Dest_pointer ; 3 µs     ; 3 bytes  
  LDIR    ; 11999 µs ((6x2000)–1) ; 2 bytes 
      ; ----------    ; --------- 
      ; 12008 µs    ; 11 bytes 
 
The above code occupies 11 bytes, and is carried out in 12008 µs. 
 
If the LDIR had been fully unrolled for the 2000 occurrences defined in BC, the corresponding 
code would have lasted 10006 µs ((2000 x 5) +6). 
But in return, this code would have occupied 4006 bytes in RAM or ROM. (2000x2+6). 
Example of a mixed method where the periodic "repetition" of LDIR is simulated by a loop: 
 
  LD HL,Source_pointer ; 3 µs   ; 3 bytes 
  LD DE,Dest_pointer ; 3 µs   ; 3 bytes 
  LD A,200   ; 2 µs   ; 2 bytes 
LOOP 
  LDI    ; 5 x 200 µs  ; 2 bytes 
  LDI    ; 5 x 200 µs  ; 2 bytes 
  LDI    ; 5 x 200 µs  ; 2 bytes 
  LDI    ; 5 x 200 µs  ; 2 bytes 
  LDI    ; 5 x 200 µs  ; 2 bytes 
  LDI    ; 5 x 200 µs  ; 2 bytes 
  LDI    ; 5 x 200 µs  ; 2 bytes 
  LDI    ; 5 x 200 µs  ; 2 bytes 
  LDI    ; 5 x 200 µs  ; 2 bytes 
  LDI    ; 5 x 200 µs  ; 2 bytes 
  DEC A   ; 1 x 200 µs  ; 1 byte 
  JR NZ,LOOP  ; (3 x 200)-1 µs  ; 2 bytes 
      ; ------------  ; ------------ 
      ; 10799 µs  ; 31 bytes 
 
In the example above, the code occupies 31 bytes and consumes 10799 µsec. 
 
If we had added 10 LDI (bringing their number to 20) by reducing the loop to 100, we would have 
a longer code (31 + 20 = 51 bytes) but faster (100 loops of 104 µs + 7µs = 10407 µs). 
 
This principle can be applied to largely repeated portions of code. 
It can be the case for example for code that deals with the display of sprites. 
And especially during masking operations which consists in making a "hole" in the background (for 
example with AND operation) to place the sprite (with OR operation) before display. 
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23.8 UNCONDITIONAL BRANCHING 
 
Instead of dealing with conditional branches, another common method is to use a list of execution 
pointers via the stack. Each RET instruction (3 µsec) causing the PC register to switch to a new 
routine (and SP to point to the next address).  
 
This method generally requires preparing the table upstream, particularly to manage exit cases if 
this is not provided for elsewhere. This method nevertheless prohibits the use of interrupts (which 
of course you have foreseen). 
 
Example : 
EXEC_LIST1 DW FUNCTION1  EXEC_LIST2  DW FUNCTION2 
   DW FUNCTION2     DW FUNCTION1 
   DW FUNCTION3     DW FUNCTION3 
;---------------------------------- 
FUNCTION1  
   ... 
   RET 
;---------------------------------- 
FUNCTION2 
   ... 
   RET 
;---------------------------------- 
FUNCTION3 
   ... 
SP_BACKUP1 LD SP,0     ; Self modified code 
   RET 
;---------------------------------- 
MAIN 
  DI 
  LD (SP_BACKUP1+1),SP   ; Self modification of code 
  LD SP,EXEC_LIST1     ; or EXEC_LIST2 
  RET 
 
 
In a situation where the time is critical, the instructions JP HL, JP IX and JP IY are valuables. 
The first of these 3 instructions execute in 1 µsec (the other 2 with 1 µsec more).  
L, LX or LY can be used as an index provided they remain in a 256 byte page defined by H, IXH, 
IYH. 
 
Note: The ZILOG JP (HL/IX/IY) notation is misleading, because the jump takes place at the 
address contained in the HL/IX/IY register and not at the address contained at the address 
pointed to by HL/IX /IY. Recent assemblers accept these new notations. 
 
Finally, and this is very anecdotal, but it is always possible to use CPC interrupts and arrange for 
R52 to generate an interrupt in order to interrupt a loop, considering that a non-repetitive 
instruction is not divisible. However, it must be considered that interrupts at this stage are not 
reliable between different CPCs when long instructions must be interrupted. (see chapter 26.7.2) 
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23.9 PAGES TREATMENTS 
  
The Z80A remains an 8-bit processor, even if it is able to handle 16-bit values. 
 
However, the instructions that use this possibility are slower than those that handle 8-bit values. 
It is thus faster to make an "INC L" (1 µs) than an “INC HL” (2 µs). 
 
In addition, access to RAM are faster in indirect addressing. 
LD A, (BC) or LD (HL), E will last 2 µsec for example. 
 
An absolute addressing will be costly (‘LD (address), A’ 4µs and ‘LD (address),DE’ 6µs) and has no 
interest when it comes to treating a table or a structure. 
 
The indexed addresses are quite indigestible because the index value "N" is stored in the 
instruction (LD A, (IX+N) 5µs). These instructions are also very slow because the pointer is 
calculated on 16 bits. 
 
In a performance context, the architecture of the Z80A promotes the organization of data by 
pages of 256 bytes. Most assemblers integrate directives that align tables on page frontiers (when 
the less significant byte (LSB) of the address is 0). 
 
It is thus possible to easily access the content of a table by handling the less significant byte of 
the address contained in BC, DE or HL. It is then considered that C, E or L are the indexes of a 
table of 256 bytes pointed out respectively by B, D or H. 
 
Thus to define a data structure containing several values, the architecture by page offers very 
good access performance. Imagine (for example) that we want to define a structure which 
contains 2 types of data: Mxx of type Word (16 -bit) and Nxx of type Byte (8 bits). 
 
And that's good, we need to have less than 256 times of this structure. 
 
In principle we can define things as well as 
 
MNStruct  DW M00  ; Index 0 
   DB  N00 
   ;   
   DW M01  ; Index 1 
   DB N01 
   ;  
   DW M02  ; Index 2 
   DB N02 
   ... 
   ... 
   DW M85  ; Index 85 
   DB N85 
 
Access to one of the MNStruct structures consists in multiplying the index of the structure to be 
achieved by the size of the structure (here 3 bytes) and adding the offset obtained to MNStruct. 
Then just read (or write) the values stored at the calculated address. Calculation and access to 
these structures involve working on 16 bits. 
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If MNStruct is aligned at the start of the page (for example the table begins in #4000), it is 
necessary to calculate the address on 16 bits if the total size of the structures exceeds 256 bytes. 
In our example, this is the case because the index exceeds 84. 
But it is also necessary to consider when the pointer on the structure calculated in HL, BC or DE is 
updated. 
 
In our example the index structure 85 is located in #4000+(85x3) = #40ff 
The LSB (less significant byte) of M85 is located on page #40, and the other 2 values of the 
structure on page #41. If contained #40ff, you must have a INC DE and not an INC E to access 
the following value with LD A,(DE) or LD (DE),A. Note however that if the table is less than 2 
pages of 256 bytes, the exceeding of the page will only occur for one of the values of the 
structure. In the example, the INC DE will then only calculate the pointer on the MSB (Most 
signfificant byte) of M85, access to N85 requiring only a INC E. 
 
If 256 is a multiple of the size of the structure, then it is no longer necessary to manage the 
increment of the current structure with 16-bit instructions, because no structure is then between 2 
pages. For example, if the structure was 4 bytes, there would be exactly 64 structures per page of 
256 bytes. It can therefore be relevant to add 1 byte to the structure to avoid having to use a 16-
bit INC or ADD instruction. 
 
Another way to organize the data is to define 3 tables each starting out on page frontier for each 
8 -bit value declared in the structure: 
 
TabMLow  DB M00Low 
   DB M01Low 
   ... 
   DB M85Low 
 
TabMHigh  DB M00High 
   DB M01High 
   ... 
   DB M85High 
 
TabN   DB N00 
   DB N01 
   ... 
   DB N85 
 
This organization greatly facilitates things and is very efficient. 
 
If for example, TabMLow is located at #4000, TabMHigh is located in #4100 and TabN is 
located in #4200, then the LSB of the pointer designates the index and then the MSB of the 
pointer allow to switch between data. 
 
With H=#40 and L=index, we can write: 
  LD E,(HL) ; 2 µs ; Load TabMLow[Index] in E 
  INC H ; 1 µs ; Switch to TabMHigh 
  LD D,(HL) ; 2 µs ; Load TabMHigh[Index] in D 
  INC H ; 1 µs ; Switch to TabN 
  LD C,(HL) ; 2 µs ; Load TabN[Index] in C 
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This kind of organization is ideal when 256 structures are defined because there is no "waste" of 
memory. But if this is not the case, nothing prevents accommodation several structures within the 
same page. In our example, the first 86 bytes of each page are used, but nothing prevents 
managing another structure from offset 86 on each page. 
 
We can also consider that a value contained in an indexed structure is the index of another table 
of structures. It’s a pretty common thing. Always with the previous example, suppose that N is an 
index on another table located in #4300 (TAB2). 
If B contains #43, we can write in the continuity of the previous example: 
 
  LD C,(HL) ; 2 µs ; Load TabN[Index] in C 
  LD A,(BC) ; 2 µs ; Load Tab2[TabN[Index]] in A 
 
If by a lucky coincidence, it is possible to coexist within one page another index on this same 
page, we can then write: 
  ; 
  LD L,(HL) ; Load in L the R0 value, as an index to find R9 
  LD H,(HL) ; Load in H the R9 value 
 
On a smaller scale than a table aligned on a page of 256 bytes, we can consider that a data 
structure can start on an even or odd address. Assembler directives allows to respect this 
constraint. This allows to optimize the access of the data pointed to by HL, for example, by 
successively using INC L / INC HL if the start address of the data is even, and INC HL / INC L 
if the start address of the data is odd. Indeed, it is certain that the page boundary overflow only 
occurs on an odd address (when L is 255). 
 
This notion of alignment can be extended to quantities that are multiples of 256 bytes per page, 
in order to minimize the number of 16-bit increments. Thus if a table is aligned on a border of 16 
bytes in a page of 256 bytes, then one can use 15 times INC L and 1 time INC HL (for a 
pointer defined in HL), since there will only be 16 times the probability that the zone thus defined 
is at the border of a page of 256 bytes. These techniques allows to minimize the use of 16-bit 
increments, which are twice as long as 8-bit increments. 
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23.10 BULK TIPS 

23.10.1 LOOPS 
 
When writing a loop that tests whether a 16-bit pointer has reached a certain value, one solution 
is to compare the MSB (More significant byte) and LSB (Less significant byte) respectively with the 
values to be reached. If the comparison is carried out with the MSB order first, the LSB of the 
pointer will be compared in a 2nd longer delay, and this until the condition of equality with the 
LSB is satisfied. On the other hand, if the comparison is carried out with the LSB, it is the MSB of 
the pointer that will be compared in the 2nd part of the test as many times as the value of the 
LSB will be reached. Depending on the value of the 16-bit pointer to be reached, it is therefore 
appropriate to reverse the order of testing the MSB and LSB: 
 
LOOP       LOOP 
  INC HL      INC HL 
  LD A,H      LD A,L 
  CP HIGH(pointer) ; MSB   CP LOW(pointer) ; LSB 
  JR NZ,LOOP     JR NZ,LOOP 
  CP LOW(pointer); LSB 2nd test  CP HIGH(pointer) ; MSB 2nd test 
  JR NZ,LOOP     JR NZ,LOOP 
 
If we want to test that a 16-bit register has reached 0, we can test it like this: 
 
  LD BC, Nb_Occurrences 
LOOP 
  ... 
  DEC BC  ; 2 µs  ; 1 byte 
  LD A,B  ; 1 µs  ; 1 byte 
  OR C   ; 1 µs  ; 1 byte 
  JR NZ,LOOP ; 3/2µs ; 2 bytes 
 
But we can also do this, which is just as fast but takes up less space, and doesn't modify A: 
 
  LD BC, Nb_Occurrences+255 
LOOP 
  ...  
  DEC BC  ; 2 µs  ; 1 byte 
  INC B   ; 1 µs  ; 1 byte 
  DJNZ LOOP  ; 4/3 µs  ; 2 bytes 
 
In the event that HL needs to be incremented, it is also possible to write: 
 
  LD BC, Nb_Occurtences 
  LD HL, My_Pointer 
LOOP 
  ... 
  CPI   ; 4 µs  ; 2 bytes 
  JP PE,LOOP  ; 3 µs  ; 3 bytes 
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23.10.2 CALCULATION OF THE VIDEO POINTER 
 
A great classic on CPC is to calculate the address of the following line in a "standard" formatted 
frame, with lines of 64 µs and R9=7. 
 
C9's 3 less significant bits correspond to the 11.12.13 bits of the video pointer. 
So, the offset of the video pointer in a page is C9 x #800. 
To move to the next line on a frame which is not forced by a demonic rupture, it is therefore 
enough to add #800 to the current pointer. 
 
When pointer is on the 8th line of a vertical character (C9 = 7), a specific calculation must be 
made for the pointer to return to the first line of the following caractor line (C9 = 0): (Pointer+(0 
x #800)+(CRTC.R1 X 2)). 
 
The most classic routine is as follows, with a few variants: 
 
   Variant 1   Variant 2 
NEXTLINE  LD HL,PtrVideo  ... 
   LD A,H   ...    ; 1 
   ADD A,8   ...   ; 2 
   LD H,A   ...   ; 1 
   RET NC   ... 
   LD BC,#C000+(R1x2) LD A,L  ; BC is saved 
   ADD HL,BC   ADD A,R1x2 
   RET    LD L,A 
       LD A,H 
       ADC A,#C0 
       LD H,A 
       RET 
 
The page overflow test, which lets you know if the last line has been reached, is valid for a page 
located at #C000, but not on another page. Indeed, adding 8 to the MSB of the video pointer of a 
page located at #0000, #4000 or #8000 does not cause the pointer to overflow and does not set 
the C flag to 1. The table below describes the possible tests according to the different pages. 
 

#0000 #4000 #8000 #C000 

LD A,H 
ADD A,8 
LD H,A 
ADD A,A 
RET P 

LD A,H 
ADD A,8 
LD H,A 
RET P 

LD A,H 
ADD A,8 
LD H,A 
ADD A,A 
RET P 

LD A,H 
ADD A,8 
LD H,A 
RET NC 

 
It is also possible to calculate the offset on a given page and then apply an offset correction 
according to the desired 16k page. 
 
One solution is also to precompute row start pointers in a table. 
An index then corresponds to the Y line number allowing the access to these pointers. But that 
implies to add position X to the pointer thus calculated. 
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Another method consists in modifying H thanks to the instruction RES (2 µs) and SET (2 µs). 
However, we cannot access line in a linar way with this method using 1 single instruction each 
line. It is however possible by not respecting the order of the lines, but then requires organizing 
the graphic data in the order of their writing. 
Example : 
   LD HL,#C000  ; HL=#C000 (C9=0) 
   LD (HL),%00000001 ;  
   SET 3,H   ; HL=#C800 (C9=1) 
   LD (HL),%00000011 ;  
   SET 4,H   ; HL=#D800 (C9=3) 
   LD (HL),%00001111 ;  
   RES 3,H   ; HL=#D000 (C9=2) 
   LD (HL),%00000111  
   SET 5,H   ; HL=#F000 (C9=6) 
   LD (HL),%01111111 
   SET 3,H   ; HL=#F800 (C9=7) 
   LD (HL),%11111111 
   RES 4,H   ; HL=#E800 (C9=5) 
   LD (HL),%00111111 
   RES 3,H   ; HL=#E000 (C9=4) 
   LD (HL),%00011111 
  
Each line calculation takes 2 µs/2 bytes versus 3 µs/3 bytes considering a solution that sacrifices a 
register and A. With B = 8 offered in sacrifice, we would have between each line: 
 
   LD A,H ; 1 µs 
   ADD A,B ; 1 µs (with B=8) 
   LD H,A ; 1 µs 
 
One of the peculiarities of hardware scrolls is that video memory is cycling as long as the bits of 
pages are not affected (see chapter20.5). For example, if the memory is led to cycler on the 16K 
page located in #C000 (because each of the “Overscan Bits ™”  are not 1), this means that the 
CRTC will display the byte located at #C000 after that displayed in #C7FF. And when it is 
necessary to recalculate the pointer which had reached the last line of a character (C9 = 7 in the 
example) it is necessary to consider when R1 x 2 is added to this pointer. In this case if the video 
pointer had exceeded #10000-(R1 x 2), it is necessary to correct the calculated pointer by 
anihiliating its bit 3: 
 
NEXTLINE  LD HL,VideoPtr   
   LD A,H        
   ADD A,8       
   LD H,A  ; VideoPtr+#800 
   RET NC  ; Test Page Overflow for #C000 page 
   LD A,L   
   ADD A,R1x2 
   LD L,A 
   LD A,H 
   ADC A,#C0 
   RES 3,A  ; Video Pointer Correction 
   LD H,A 
   RET 
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Things can become particularly complicated for browsing the video ram when the pointer is at the 
border of the cycling zone. Since the memory is not linear, it is not always possible to simply 
correct the pointer, and in particular on odd C9s, as can be seen in the following table: 
 

C9 Current 
pointer 

Ptr+1 Calculated 
pointer 

Correction Corrected 
pointer 

0 C7FF INC HL C800 RES 3,H C000 

1 CFFF INC HL D000 SET 3,H 
RES 4,H 

C800 

2 D7FF INC HL D800 RES 3,H D000 

3 DFFF INC HL E000 SET 3,H 
SET 4,H 
RES 5,H 

D800 

4 E7FF INC HL E800 RES 3,H E000 

5 EFFF INC HL F000 SET 3,H 
RES 4,H 

E800 

6 F7FF INC HL F800 RES 3,H F000 

7 FFFF INC HL 0000 LD A,H 
OR #F8 
LD H,A 

F800 

 
Performing a correction at each increment of an odd pointer to consider a situation that occurs 
once is extremely penalizing when it comes to displaying sprites on a scrolling hardware, for 
example. In addition, the most efficient sprite display methods require being able to browse the 
Video RAM in both directions, which represents a new complexity to manage. 
 
A solution is to create specific display routines when the pointer on the data to be covered in the 
video RAM is on the cycling frontier. It is then necessary to identify that the processed line-char 
"contains" this frontier, and call a specific code to treat the transition. 
 
For example, if it is a question of displaying a sprite 4 bytes wide (8 Pixels Mode 0, symbolized by 
color zones) on a line C9 = 0, then it should be provided that this Sprite can occupy the following 
locations in Video RAM: 
 

C7FC C7FD C7FE C7FF C000 C001 C002 C003 

C7FC C7FD C7FE C7FF C000 C001 C002 C003 

C7FC C7FD C7FE C7FF C000 C001 C002 C003 

C7FC C7FD C7FE C7FF C000 C001 C002 C003 

C7FC C7FD C7FE C7FF C000 C001 C002 C003 

 
For special cases indicated in orange, it is for example possible to manage two pointers from a 
table indexed by C9, in order to meet the requirements of a specific code. In the example, we 
would have, for example, HL=C7FF and HL ’=C000 for C9 = 0, allowing the special code to switch 
between the two current addresses with the EXX instruction (1 µs). The particularity of the 
frontier would thus be circumscribed, allowing to avoid any pointer correction in the general case. 
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23.10.3 FLAG SETTINGS 
 
More of a reminder than a real “trick”. 
The following table describes the instructions available according to some states of the register F 
 

Asm Définition Flag JR JP CALL RET 

Z Zero Z=1     

NZ Not Zero Z=0     

C Carry C=1     

NC Not Carry C=0     

PE Even Parity P=1     

PO Odd Parity NPE P=0     

P Positive S=0     

M Negative (NP) S=1     

 
The most often used states of F are C and Z. 
Here are some instructions for positioning them: 
 

Z Flag  C Flag Instruction(s) Update 

1 0 CP A  

0 0 OR #F6 A=#F6 

-- 1 SCF  

-- 0 OR A  

1 1 CP A + SCF  

0 1 SCF + SBC A,A A=#FF 

 

23.10.4 RATHER THAN... 
 
NEG (2 bytes/2 µs) is equivalent to CPL:INC A (2 bytes/2 µs) 
 
Rather than ‘NEG :ADD A,d’ (4 bytes / 4 µs) 
Prefer  ‘CPL :ADD A,d+1’ (3 bytes / 3 µs) 
 
Rather than ‘BIT 6,A :JP NZ,Kloug’ (5 bytes / 5 µs) 
Prefer  ‘ADD A,A : JP M,Kloug’ (4 bytes / 4 µs)  
 
Rather than ‘LD A,reg8 : NEG’ (3 bytes / 3 µs) 
Prefer  ‘XOR A :SUB reg 8’ (2 bytes / 2 µs)  
 
Rather than ‘LD A,0’ (2 bytes / 2 µs) 
Prefer  ‘XOR A’ (1 byte / 1 µs) but only if you want to set Z to 1. 
 
Rather than ‘CP 0’ (2 bytes / 2 µs) 
Prefer  ‘OR A’ (1 byte / 1 µs) 
 
Rather than ‘XOR #FF’ (2 bytes / 2 µs) 
Prefer  ‘CPL’ (1 byte / 1 µs) 
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24 A BRIEF HISTORY OF FIXED TIME 

24.1 INTRODUCTION 
 
On CPC, the duration of each instruction is stable and linearized by the timing imposed by the 
GATE ARRAY on the Z80A when it needs to access memory. Unlike other processors, the speed of 
instructions does not depend on the order of the instructions or the type of ram from which they 
are read by the processor. 
 
This particularity makes it quite easy to calculate the time taken by a function, since it suffices to 
know the number of µseconds taken by each instruction. 
The shortest instructions are 1 µs. This is particularly the case of the NOP instruction, which is 
often used to define the duration of a set of instructions. 
 
However, the duration of certain instructions may be different depending on the fulfillment of a 
condition processed by the instruction. This is particularly the case for relative conditional 
branches (JR cond,offset or DJNZ offset), function calls (CALL cond,address) or conditional 
function returns (RET cond). This is also the case for repetitive instructions (LDIR, LDDR, OTIR, 
OTDR) during the last iteration. 
 
You can consult Chapter 25, page 267 to obtain on a single page the list of delays in µseconds of 
each instruction of the Z80A. 
 
The duration of the code of a function can therefore vary according to the different conditions 
satisfied during its execution. Whether it is to make nice demos or certain demanding games, it is 
necessary to be able to create code for which we know the duration, and to ensure that this 
duration does not vary. 
 
Indeed, torturing certain circuits requires them to be periodically solicited very precisely, often to 
the nearest µsecond. This is the case for the CRTC when it comes to certain barbaric techniques 
mentioned in this document which require precision of the order of one µsecond. This is also true 
for the GATE ARRAY when called upon to quickly change its color scheme or its graphic mode. Or 
even for the AY-3-8912 (the sound generator of the CPC) when trying to create new sounds. 
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24.2 METHODS 
 
Writing a code in fixed time requires considering the elements likely to vary the duration of this 
code. In general, it is conditional branching, or loops with a number of variable iterations which 
are an obstacle to the achievement of this objective. 
 
Without entering into a shared time logic, if you have a Z80A function whose time is variable, its 
passage in "fixed time" will require that it is the maximum period of this function which is the 
reference. 
 
In other words, it is necessary here to introduce the concept of compensation. 
 
For example we have a function A which last 40, 60 or 95 µs, depending on the situations. 
This same fixed time function will always have to last 95 µs. 
When the function will last 40 µs it will have to compensate with 55µs, and it will have to 
compensate 35 µs when it lasts 60 µs. 
 
The writing of a compensation code is not always easy. 
Some tips and tools can facilitate the task. 
 
Example 1 :  
FUNCTION_01   ; Not fixed time function 
  OR A   ;  1  ; Test if A==0 
  JR Z,ITSZERO ;  2  / 3 
  LD HL,1234  ;  3  / 0 
  LD A,2  ;  2  / 0 
  RET   ;  3  / 0 
ITSZERO 
  LD A,1  ;  0  / 2 
  RET   ;  0  / 3 
     ; 11 / 8   
 
On the right, two columns symbolize the duration of the 2 execution branches of FUNCTION_01. 
 
When the condition A>0 is filled JR Z,ITSZERO does not jump to ITSZERO. 
The instruction nevertheless lasts 2 µs. The duration of each instruction is then indicated on the 
right in the first column, until the RET. 
In this situation, the function lasted 11 µs. 
 
When A=0, JR Z jumps to ITSZERO in 3 µs. 
In this situation, the function lasted 8 µs. 
 
The solution here is easy to understand. 
The compensation must be 11-8 = 3 µs. 
It is therefore possible to add 3 NOPs before the RET, and voila. 
The function will then last 11 µs. 
 
The previous example is quite simple because the function uses 2 completely distinct branches of 
code. But things get complicated a bit if the jump instructions come back in common branches. 
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Example 2 :  
FUNCTION_02   ; Not fixed time function 
  LD A,(COUNTER) ;  4  / 4 ; Reading counter 
  DEC A  ;  1  / 1 ; Counter - 1  
  JR NZ,NOZERO ;  2  / 3 ; Counter reach 0 ? 
  LD A,10  ;  2  / 0 ; Yes reload with 10 
NOZERO 
  LD (COUNTER),A ;  4  / 4 
  RET   ;  3  / 3 
     ; 16 / 15   
 
In this example, the code from NOZERO is common. 
The compensation here is more delicate to make because we cannot do it from NOZERO. 
 
It is the code not executed when the condition is false (A=0) which extends the duration. 
 
A technique consists in using a single instruction of 1 µs when the condition is not carried out. 
These include instructions such as EXX / EX DE,HL / LD r8,R8 / INC r8 
 
FUNCTION_02   ; Fixed time function 
  LD A,(COUNTER) ;  4  / 4 ; Reading counter 
  DEC A  ;  1  / 1 ; Counter - 1 
  LD B,10  ;  2  / 2  
  JR NZ,NOZERO ;  2  / 3 ; Counter reach 0 ? 
  LD A,B  ;  1  / 0 ; Yes Counter reloaded with 10 
NOZERO 
  LD (COUNTER),A ;  4  / 4 
  RET   ;  3  / 3 
     ; 17 / 17 
 
Register B was sacrificed on the fixed time altar. 
But FUNCTION_02 will always last 17 µs. Mission accomplished ! 
 
We see here that a solution consists in preparing a context whose duration is greater than 1 µs 
(LD B,10) and which will be exploited by the instruction of 1 µs which follows the JR Condition 
(LD A, B).   
 
Thus, EXX and EX DE,HL are particularly effective instructions. 
FUNCTION_03   ; Not fixed time function 
  OR A   ;  01 / 01 
  LD HL,ADRESS2 ;  03 / 03 
  LD DE,#4321 ;  03 / 03 
  JR Z,ITSZERO ;  02 / 03 
  LD HL,ADRESS1  ;  03 / 00 
  LD DE,#1234  ;  03 / 00 
ITSZERO 
  LD (HL) ,E  ;  02 / 02 
  INC HL  ;  02 / 02 
  LD (HL),D   ;  02 / 02 
  RET   ;  03 / 03 
     ;  24 / 19 
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Here, the solution is also quite simple to manage with EXX. 
FUNCTION_03   ; Fixed time function 
  OR A   ;  01 / 01 
  LD HL,ADRESS1  ;  03 / 03 
  LD DE,#1234  ;  03 / 03 
  EXX   ;  01 / 01 
  LD HL,ADRESS2 ;  03 / 03 
  LD DE,#4321 ;  03 / 03 
  JR Z,ITSZERO ;  02 / 03 
  EXX   ;  01 / 00 Context swap 
ITSZERO 
  LD (HL) ,E  ;  02 / 02 
  INC HL  ;  02 / 02 
  LD (HL),D   ;  02 / 02 
  RET   ;  03 / 03 
     ;  26 / 26 
In the case where only one context is not enough, it is possible to chain them as long as no 
instruction changes the condition state. 
If we take the previous example, before the RET, we could have: 
  ... 
ITSZERO 
  LD (HL) ,E  ;  02 / 02 
  INC HL  ;  02 / 02 
  LD (HL),D   ;  02 / 02 
  LD A,10  ;  02 / 02 
  LD B,20  ;  02 / 02 
  JR Z,ZEROAGAIN ; 02 / 03 
  LD A,B  ; 01 / 00 2nd context 
ZEROAGAIN 
  RET   ;  03 / 03 
     ;  36 / 36 
 
Sometimes there are situations or the content of a register will determine a treatment: 
  CP 0 
  JR Z,TREATMENT0 
  CP 1 
  JR Z, TREATMENT1 
  CP 2 
  JR Z, TREATMENT2 
  ... 
If the values contained in A are close, a method consists in creating a treatment table indexed by 

A. 

TREATMENT_TAB 
  DW TREATMENT0 
  DW TREATMENT1 
  DW TREATMENT2 
  ... 
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The connection code is quite simple and its execution is in fixed time : 

  LD L,A   ; Index x 2 
  LD H,0 
  ADD HL,HL 
  LD BC, TREATMENT_TAB 
  ADD HL,BC   ; Ptr to TREATMENT_TAB[Index] 
  LD A,(HL)   ; HL=TREATMENT_TAB[Index].PtrExec 
  INC HL 
  LD H,(HL) 
  LD L,A 
  JP (HL) 
 
If the values tested are not consecutive and cannot serve as an index, it is possible to create a 
table of values associated with addresses, and browse the entire table, even when the value is 
found before having reached the end of the table. For the value found, it is enough to 
retain the address found. The index search function must be in fixed time. 
 
Creating a fixed-time generic index search function is a valuable ally in this quest 

24.3 FIXED TIME AND INTERRUPTIONS 
 
In general, it is rather better to deactivate the interruptions if you have not planned to count 
them. But it is possible to do with it.. 
 
This is not complex, insofar as the call in #38 (Mode IM 1) lasts 5 µs, regardless of the CPC. It 
takes 7 µs in IM 2. See chapter 26.4 for more information. 
 
Many programs synchronize thanks to the interruptions, and in particular thanks to the HALT 
instruction. This method is often used to allows to define the code periods in "free time" before 
the interruption occurs, and then reserve the periods sensitive to the "fixed time" which occurs 
after the HALT instruction. 
 
A difficulty is that many CPU optimization methods imply that the stack serves as a pointer to read 
data. However, the stack is used in particular by the instructions for calling functions (CALL, RST). 
And an interruption achieves an RST. Also the content of the stack is modified with the address of 
the instruction where the interruption was accepted by the Z80A. 
 
The interruption code can plan to "correct" the RAM "perverted" to return to the interrupted code, 
but that requires knowing exactly what will be destroyed and where: 
MY_INTER 
   LD (BACKUP_HL+1),HL ; Save HL 
   POP HL   ; Get adress of interrupted code 
   LD (RET_INT_ADR+1),HL ; Prepare end of interruption 
   LD HL,xxxx   ; Corrective value of ram pointed by SP 
   LD (yyyy),DE  ; Ram correction 
BACKUP_HL LD HL,#2121  ; Load HL 
   EI    ; Acq. interruption 
RET_INT_ADR JP #C3C3   ; Return to interrupted code 
 
It is easier to deactivate interruptions with a simple DI. 
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However, this causes a bias, because if the interruptions should be authorized again, this cannot 
be done anywhere if they had been disabled for more than 52 lines. In this case, the reactivation 
of interruptions during the last 20 lines of the groups of 52 lines following leads to a discrepancy 
of the interruptions, and it is therefore necessary to consider it. 
 
Finally, to finish this chapter, it is useful to specify that an interruption occurs at the end of a 
HSYNC. On CRTC 3 and 4, the HSYNC occurs 1 µs later than on CRTC 0, 1 and 2. 
 
With the same R2 and R3 programming the interruptions therefore occurs 1 µs later on the 
CRTC’s 3 and 4. A commonly used method consists in reducing R3 by 1 to allow compatibility. In 
addition, it is necessary to add to this discharge 1 µs more because the I/O CRTC of the 
instructions OUT(C),C on the CRTC’s 3 and 4 occur 1 µs later (OUTI instruction not being 
concerned by this difference). 
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24.4 COMPENSATORY TOOLS 
 
The examples of the previous chapter show that fixed time programming requires calculations. 
This can significantly increase the maintenance of a code. 
 
Some assembler can incorporate directives to calculate the CPU of the instructions located 
between 2 labels and use the value thus found to "compensate". 
 
Imagine for example the CPU_START and CPU_END:<Variable> directives. 
 
Example of compensation for a function whose period is 64 µs. 
  LD HL,NICE_COLOR_TABLE ;  
  LD B,#7F 
  OUT (C),0    ; Select Pen 0 
  LD A,20    ; 20 lines of 64 µs each 
LOOP_START 
CPU_START: 
  LD A,(HL)    ; 2 µs 
  OUT (C),A    ; 4 µs 
  INC HL    ; 2 µs 
  DEC A    ; 1 µs 
CPU_END: DelayCPU 
  DEFS 64-DelayCPU-3,[NOP] 
  JP NZ,LOOP_LINE  ; 3 µs 
LOOP_END 
 
In this example, the objective is that the code present between LOOP_START and LOOP_END 
always lasts 64 µs, whatever the updates likely to be carried out then between the CPU_START 
and CPU_END directives by the programmer. 
The assembler will calculate the CPU in DelayCPU variable. 
In our example, DelayCPU is worth 9 µs. 
It is necessary to consider the 3 µs of the loop (the JP NZ), to define the number of NOPs to 
create for compensation (via DEFS) so that the duration is always equal to 64 µs. 
 
Fixed time programming requires being able to "waste" time. 
 
We can wait "for a long time", as is the case with the wait_usec function detailed at the end of 
chapter 7.2. This function is provided to wait for a quantity of µsec defined on 16 bits, but does 
not allow to define a waiting value of less than 49 µs. 
 
It is possible to write a more precise function: 
Wait_64  nop 
...   ... 
...   ... 
Wait_13  nop 
Wait_12  nop 
Wait_11  nop 
Wait_10  nop 
Wait_09  nop 
Wait_08  ret 
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Thus a CALL Wait_08 will take very exactly 8 µs (the CALL and the RET). 
If Wait_64 is considered to be the reference period of this function, then the execution pointer 
for a waiting period between 8 and 64µs is Wait_64+64-delay. 
 
For shorter time than 8 µs, it is possible to use neutral instructions. 
Several of these instructions are described in chapter 24.7. 
 
The calculation by an assembler of the CPU between 2 labels remains very limiting to manage 
compensation. It’s useful, but it doesn’t consider the reality of the global code execution. In 
addition, even by adopting programming reflexes in fixed time, the updates of a source can be 
tedious, even unmanageable. 
 
There is a tool that allows to calculate the CPU located between two addresses in order to 
automate compensation. It was created to allow the democratization of this type of 
programming. Its implementation allows to design code in fixed time on the entire frame (19968 
µs) without having to make tedious calculations. Moreover, a fixed time code over a period of 
19968 µs makes waiting for VSYNC obsolete. 
 
There is a big difference between the CPU calculated by an assembler directive (in order to create 
the code) and a tool that calculates the exact CPU of an already assembled code. 
Indeed, the CPU depends on many factors that an assembler cannot manage (self-modified code, 
generated code, loops, conditional calls, ...). 
 
It is possible to download the Z80A source from this tool here: 
http://logonsystem.fr/down/CalcCpuv4.asm 
 
To use it, you have to pass a start address (in HL) and an end address (in DE) for the code 
concerned. The function returns to BC the calculated number of µs. It is thus simple to be able to 
calculate the necessary compensation over a given fixed period of time. 
 
In order to generalize the application of this tool to several "portions" of code, we can define a 
structure pointed out by IX and containing the call and compensation parameters: 
CCPU_UNITY    ; Unity Compensation of CPU 
   ld l,(ix+0)  ; HL=start address of code 
   ld h,(ix+1) 
   ld e,(ix+2)  ; DE=end address of code 
   ld d,(ix+3) 
   ; 
   call CalcCPU ; Calculation of code duration in µs 
   ; 
   ld l,(ix+4)  ; HL=Expected time fixed duration of code 
   ld h,(ix+5) 
   or a 
   sbc hl,bc  ; From which we subtract the calculated duration  
   ex de,hl  ; DE= compensation duration (in µs) 
   ld l,(ix+6)   ; HL=start adress of compensation context 
   ld h,(ix+7) 
   ld (hl),e  ; In which we store the compensation duration 
   inc hl 
   ld (hl),d 
   ret 

http://logonsystem.fr/down/CalcCpuv4.asm
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Example of code using this function: 
 
   ld ix,SCCPU_FRAME ; Définition of code to compensate 
   call CCPU_UNIT  ; Update of « ld de,0 » at FRAME_COMP  
   ; 
   call sync_vbl  ; Waiting Vsync 
FRAME_START     ; 1ère µsec after vsync (C0vs) 
   ... 
   your code here 
   ... 
FRAME_COMP ld de,0   ; xxxx µs (compensatory duration) 
FRAME_END 
   call wait_usec  ; 5 µs 
   jp FRAME_START  ; 3 µs  
    
SCCPU_FRAME dw FRAME_START, FRAME_END 
   dw 19968-8, FRAME_COMP+1 
 
In this example, we want FRAME_START to be called all 19968 µs, regardless of the code in 
fixed time which is entered between the FRAME_START and FRAME_END labels. 
 
The CCPU_UNIT function will do the calculation, then subtract the found result from 19968-8 
(the 8 µs correspond to the duration of the call wait_usec and the JP FRAME_START). We 
cannot "integrate" the expectation of compensation in the calculation since the objective of the 
calculation is precisely to define the duration. 
 
At the end of the function, the compensation value modified the operand of "le de,0". 
 
In this example, the use of this function is simplified. In particular it does not manage the case 
where the code lasts longer than the maximum duration provided in order to alert the 
programmer that its code is too long.. 
 
In addition, in development mode, it is possible to manage compensation to the "run", but 
provide a compensation manager for the "delivered" code which calculates all the 
compensations of the project. This is how SHAKER is developed. 
 
It is possible to manage several code areas within the same frame, each with their 
compensation zones. It is possible to encapsulate this function in a much more efficient 
compensation manager, capable in particular of using cascading compensations, starting with the 
lowest level functions. Sub-functions can thus be compensated, while it will itself be integrated 
into the compensation of higher-level functions. 
 
It should never be forgotten that the cpu calculator "simulates" the operation of the code, and 
therefore updates the RAM (data, code) during its calculation. It is therefore necessary to think of 
resetting the data likely to have been modified during the simulation. As part of a compensation 
manager, this requires providing an initialization function in the event that code has been self-
modified, to be called between each compensation of sub-level functions. 
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24.5 FREE FIXED TIME! 
 
In a context of "cyclic" or "short" code, as can be demos, it is possible to overcome the 
programming rules in fixed time using the CPU calculator mentioned in the previous chapter. 
 
For a demo whose duration would be 4 minutes with parts created in "free time", it is possible to 
calculate its compensation value for each frame. 
 
Each minute requires 3000 compensation values. (50 frame/sec x 60 sec). 
 
In order to avoid defining 3000 16-bit values (6000 bytes), it is possible to redefine the unit of 
time. If the maximum duration to be compensated is 19968 µs, then 256 CPU units of 78 µs 
(19968/256) can be defined. Finally, these values can also be compressed. 
 
The dynamic calculation of this table is not possible as it is, because the calculator simulates the 
code and is therefore slower than direct execution. 
 
It is possible to bypass this problem by segmenting the code with the different areas in fixed time, 
in order to allow to assemble, like a lego, the calculation of the values of the compensation table 
with the different bricks already calculated. 

24.6 FROM FREE TIME TO FIXED TIME... 
 
Transforming a program written "freely" into a fixed time can be complex. 
 
Here is a method that I used to transform an AYC music player into a fixed time. 
The source is available here: http://logonsystem.fr/down/TFixAYC.rar 
 
The general idea is to calculate the CPU in real time consumed by the Player, and to compensate 
for this duration at the end of the execution. 
 
This implies on the one hand to define measurable time units in the code, even if it means 
transforming it a little to adapt certain sections to the available CPU units. 
 
The higher the amount of Z80A registers allocated to this task, the more it increases the precision 
of calculation.  
 
In the example, 5 registers are used to measure the CPU:  
IXL=UT 24µs / C=UT 16µs / IYH=UT 10 µs / IXH=UT 8µs / IYL=UT 4µs 
 
The minimum time unit is 4 µs, which is ideal for compensation. 
 
Thus for a portion of code that uses 10µs, we will find an INC IYH, for example. 
 
On the other hand, this implies calculating the longest CPU performed by the player according to 
the music used, in order to be able to compensate for the CPU from this value. This is why the 
player incorporates an option which allows to previously calculate the compensation value to be 
implemented in the final source (in the source this is the CalcCpuMax equivalence). 
 
 

http://logonsystem.fr/down/TFixAYC.rar
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Once the maximum duration is known, it is enough to compensate for this value per unit of 4µs: 
ccpu_wait04 
   inc a    ; 1 µs 
   jr nz,ccpu_wait04 ; 3 µs 
 
The real time calculation of the CPU degrades the overall performance of the player a little, but 
this degradation is nevertheless attenuated by the compensation necessity. 
 
Thus, for the technical information, this player capable of managing 14 sound registers from an 
unprocessed AYC standard format, the cost of decompression with 8-bit buffers and the sending 
of one register to the sound generator is 61.21 µsec.  

24.7 WASTING TIME... 
 
When it is a question of waiting in a precise way, it is possible to use a series of NOP’s (1 µsec) 
but this can considerably lengthen the code present in ram. If the goal is to minimize the size of a 
loop in ram, there are a few more or less "register neutral" instructions that take up little space 
and wait longer than the NOP instruction. 
 
Beware of interrupts and stack contents (or registers) when data neutrality is handled with 
stack pointer associated instructions. 
 

Instruction (s) Duration  
(in µsec) 

Size  
(in bytes) 

Be careful ! 

NOP 1  1  

CP (HL) 2 1 Update F 

JR $+2 3 2  

INC HL + 
DEC HL 

4 2  

INC (HL) + 
DEC (HL) 

6 2 Update F 
 

PUSH HL + 
POP HL 

7 2 Update stack content 

EX (SP),HL +  
EX (SP),HL 

12 2  
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25 DURATION OF INSTR. ON THE CPC 
The Z80A is interrupted by the GATE ARRAY via its READY pin when it reads the 2 bytes of the 

ram addressed by the CRTC every µ-second. The Z80A tests the state of its WAIT pin according to 

the definition of the different cycles of the instruction when it needs to access the ram or perform 

an input-output. The WAIT pin (#24) of the Z80A is driven low for 3 out of 4 cycles, causing each 

memory access to align when the WAIT signal is high again. The following table describes the 

Z80A instruction duration in µseconds. 

Instruction µs Size  Instruction µs Size 

ADC A,(HL) 2 1  DI 1 1 

ADC A,(IX/IY+d) 5 3  DJNZ 4/3 2 

ADC A, A/B/C/D/E/H/L 1 1  EI 1 1 

ADC A,HX/LX/HY/LY 2 2  EX (SP),HL 6 1 

ADC A,d 2 2  EX (SP),IX/IY 7 2 

ADC HL,BC/DE/HL/SP 4 2  EX AF,AF’ 1 1 

ADD A,(HL) 2 1  EX DE,HL 1 1 

ADD A,(IX/IY+d) 5 3  EXX 1 1 

ADD A, A/B/C/D/E/H/L 1 1  HALT 1 1 

ADD A, HX/LX/HY/LY 2 2  IM m 2 2 

ADD A,d 2 2  IN A/B/C/D/E/H/L,(C) 4 2 

ADD HL,BC/DE/HL/SP 3 1  IN A,(d) 3 2 

ADD IX,BC/DE/HL/SP 4 2  IN F 4 2 

ADD IY,BC/DE/HL/SP 4 2  INC (HL) 3 1 

AND A,(HL) 2 1  INC (IX/IY+d) 6 3 

AND A,(IX/IY+d) 5 3  INC A/B/C/D/E/H/L 1 1 

AND A, A/B/C/D/E/H/L 1 1  INC HX/LX/HY/LY 2 2 

AND A, HX/LX/HY/LY 2 2  INC BC/DE/HL/SP 2 1 

AND A,d 2 2  INC IX/IY 3 2 

BIT x,(HL) 3 2  IND 5 2 

BIT x,(IX/IY+d) 6 4  INDR 6/5 2 

BIT x, A/B/C/D/E/H/L 2 2  INI 5 2 

CALL cond,aa 5/3 3  INIR 6/5 2 

CALL aa 5 3  JP aa 3 3 

CCF 1 1  JP cond,aa 3 3 

CP A, (HL) 2 1  JP HL 1 1 

CP A, (IX/IY+d) 5 3  JP IX/IY 2 2 

CP A, A/B/C/D/E/H/L 1 1  JR a 3 2 

CP A, HX/LX/HY/LY 2 2  JR cond,a 3/2 2 

CP A,d 2 2  LD (BC/DE),A 2 1 

CPD 4 2  LD (HL),A/B/C/D/E/H/L 2 1 

CPDR 6/4 2  LD (HL),d 3 2 

CPIR 6/4 2  LD (IX/IY+d), A/B/C/D/E/H/L 5 3 

CPI 4 2  LD (IX/IY+d),d’ 6 4 

CPL 1 1  LD (aa),A 4 3 

DAA 1 1  LD (aa),BC/DE/SP/IX/IY 6 4 

DEC (HL) 3 1  LD (aa),HL 5 3 

DEC (IX/IY+d) 6 3  LD A,(BC/DE) 2 1 

DEC A/B/C/D/E/H/L 1 1  LD A/B/C/D/E/H/L,(HL) 2 1 

DEC HX/LX/HY/LY 2 2  LD A/B/C/D/E/H/L,(IX/IY+d) 5 3 

DEC BC/DE/HL/SP 2 1  LD A,(aa) 4 3 

DEC IX/IY 3 2  LD A/B/C/D/E/H/L, A/B/C/D/E/H/L 1 1 
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Instruction µs Size I/O Instruction µs Size 

LD HX/LX,A/B/C/D/E/HX/LX 2 3  RR (HL) 4 2 

LD HY/LY,A/B/C/D/E/HY/LY 2 3  RR (IX/IY+d) 7 4 

LD BC/DE/HL/SP,dd 3 3  RR (IX/IY+d),A/B/C/D/E/H/L 7 4 

LD IX/IY,dd 4 4  RR A/B/C/D/E/H/L 2 2 

LD SP,IX/IY 3 2  RRA 1 1 

LD SP,HL 2 1  RRC (HL) 4 2 

LD HX/LX/HY/LY,d 3 3  RRC (IX/IY+d) 7 4 

LD BC/DE/HL/SP/IX/IY,(aa) 6 4  RRC(IX/IY+d),A/B/C/D/E/H/L 7 4 

LD HL,(aa) 5 3  RRC A/B/C/D/E/H/L 2 2 

LD I,A / LD A,I 3 2  RRCA 1 1 

LD R,A / LD R,A 3 2  RRD 5 2 

LDD 5 2  RST 0/8/10h/18h/28h/30h/38h 4 1 

LDDR 6/5 2  SBC A,d 2 2 

LDI 5 2  SBC A,(HL) 2 1 

LDIR 6/5 2  SBC A,(IX/IY+d) 5 3 

NEG 2 2  SBC A, A/B/C/D/E/H/L 1 1 

NOP 1 1  SBC A, HX/LX/HY/LY 2 2 

OR A,(HL) 2 1  SBC HL,BC/DE/HL/SP 4 2 

OR A,(IX/IY+d) 5 3  SCF 1 1 

OR A, A/B/C/D/E/H/L 1 1  SET x,(HL) 4 2 

OR A, HX/LX/HY/LY 2 2  SET x,(IX/IY+d) 7 4 

OR A,d 2 2  SET x,(IX/IY+d),A/B/C/D/E/H/L 7 4 

OTDR 6/5 2 5*  SET x,A/B/C/D/E/H/L 2 2 

OTIR 6/5 2 5* SLA (HL) 4 2 

OUT (C),A/B/C/D/E/H/L 4 2 3 SLA (IX/IY+d) 7 4 

OUT (C),0 4 2 3 SLA (IX/IY+d),A/B/C/D/E/H/L 7 4 

OUT (d),A 3 2 3 SLA A/B/C/D/E/H/L 2 2 

OUTD 5 2 5* SLL (HL) 4 2 

OUTI 5 2 5* SLL (IX/IY+d) 7 4 

POP AF/BC/DE/HL 3 1  SLL (IX/IY+d),A/B/C/D/E/H/L 7 4 

POP IX/IY 4 2  SLL A/B/C/D/E/H/L 2 2 

PUSH AF/BC/DE/HL 4 1  SRA (HL) 4 2 

PUSH IX/IY 5 2  SRA (IX/IY+d) 7 4 

RES x,(HL) 4 2  SRA A/B/C/D/E/H/L 2 2 

RES x,(IX/IY+d) 7 4  SRL (HL) 4 2 

RES x,(IX/IY+d),A/B/C/D/E/H/L 7 4  SRL (IX/IY+d) 7 4 

RES x, A/B/C/D/E/H/L 2 2  SRL (IX/IY+d),A/B/C/D/E/H/L 7 4 

RET 3 1  SRL A/B/C/D/E/H/L 2 2 

RET cond 4/2 1  SUB A,(HL) 2 1 

RETI 4 2  SUB A,(IX/IY+d) 5 3 

RETN 4 2  SUB A,A/B/C/D/E/H/L 1 1 

RL (HL) 4 2  SUB A, HX/LX/HY/LY 2 2 

RL (IX/IY+d) 7 4  SUB A,d 2 2 

RL (IX/IY+d),A/B/C/D/E/H/L 7 4  XOR A,(HL) 2 1 

RL A/B/C/D/E/H/L 2 2  XOR A,(IX/IY+d) 5 3 

RLA 1 1  XOR A,A/B/C/D/E/H/L 1 1 

RLC (HL) 4 2  XOR A, HX/LX/HY/LY 2 2 

RLC (IX/IY+d) 7 4  XOR A,d 2 2 

RLC (IX/IY+d),A/B/C/D/E/H/L 7 4     

RLC A/B/C/D/E/H/L 2 2  x=[0..7] d=[0..ff] m=[0..2]   

RLCA 1 1  aa=[0..ffff] a=[0..ff]   

RLD 5 2  * some exceptions exist    
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26 INTERRUPTS 

26.1 GENERAL 
 
Interrupts are generated on the CPC by the GATE ARRAY, according to parameters defined by the 
CRTC. The GATE ARRAY has a counter for this purpose whose objective is to count from 0 to 51 
before returning to 0, which is often called R52. 
 
This counter is incremented at the end of a HSYNC which is produced according to the parameters 
defined by the R0, R2 and R3 registers of the CRTC. There is no minimum HSYNC size for R52 to 
support. It is even if R3=1. However, due to the re-entrance protection mechanism of the 
HSYNC’s, the minimum delay between 2 HSYNC’s is 2 µsec (because it takes at least 1 µsec 
between 2 HSYNC’s). This implies that the counter can loop in 104 µsec minimum. 
Note that the re-entrance prevention mechanism is bugged on CRTC’s from 1 to 4, which allows 
the creation of an infinite HSYNC depending on the method used (for example R0=R2=0 and 
R3=1). 
 
In "standard" operation, with a HSYNC programmed every 64 µsec, 1 interrupt can occur every 
3328 µsec (300 Hz). 
On a European standard CPC, this represents 6 interrupts per frame: 
6 x 52 lines = 312 lines. 

26.2 MANAGEMENT OF R52 COUNTER 
 
There are several particularities of management of the value of counter R52 by the GATE ARRAY. 
 
It can return to 0: 

 When it exceeds 51. 
 By setting bit 4 of the RMR register of the GATE ARRAY to 1.(10xIRrmm on #7f00) 
 At the end of the 2nd HSYNC after the start of the VSYNC. 

 
Bit 5 of counter R52 changes to 0: 

 When an interrupt was armed (pending) and it is authorized while R52 had continued 
to evolve. 

 
Note: If the request to reset R52 counter to 0 is made via the RMR function of the Gate Array 
and this request takes place on the last µsecond of the HSYNC (C0=R2+R3-1), then the reset to 0 
has priority over incrementation. If the request comes 1 µsecond before the end of the HSYNC 
(C0=R2+R3-2), then R52 is zeroed, then incremented on R2+R3-1. 
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26.3 TRIGGER CONDITIONS 
 
For an interrupt to occur, it must be triggered. 

26.3.1 TRIGGER ON R52=0 
 
The GATE ARRAY sends an interrupt request when R52=0. 
 

 If the interrupts were authorized at the time of the request, then the interrupt takes 
place and bit 5 of R52 is set to 0 (which is not very useful because it was already equal 
to 0). 

 If interrupts are not authorized, the counter continues to increment, but the interrupt 
remains armed (the GATE ARRAY then maintains its INT signal). When the interrupt is 
enabled (via Z80A EI instruction) then: 

- An interrupt occurs after the instruction following the EI. A HALT 
following an EI in this circumstance will be considered as 1 NOP. 

- Bit 5 of counter R52 is reset to 0 at the "real" end of this instruction. If bit 
5 of the counter had reached 1 (R52>=32), then this is equal to 
"removing" 32 rows from the current counter. 
This has the effect of shifting the moment when the next interrupt can 
occur. 
It prevents less than 20 lines separating 2 interrupts. 

26.3.2 TRIGGERING ON VSYNC 
 
Two HSYNC’s after the start of VSYNC: 
 
An interrupt is requested by the GATE ARRAY from the Z80A only if bit 5 of R52 is 1. In general, 
R52 "returns" to 0 when 312 HSYNC’s have occurred since the last VSYNC. 
But if the frame is not formatted correctly, then the value of R52 may be different from 0. 
As described in the previous Chapter, this rudimentary mechanism prevents two interrupts from 
occurring too closely together. 
 
R52 is set to 0 unconditionally. 

26.3.3 Z80A AND INTERRUPTIONS 
 
The Z80A EI instruction is used to enable an interrupt to occur as soon as the interrupt is armed. 
When an interrupt occurs, interrupts are disabled until a new EI occurs. The Z80A's IFF flags are 
set to 1, which has the same effect as a DI. 
However, the R52 counter continues to evolve. 
If R52 returns to 0, a new interrupt is then pending, and will occur as soon as interrupts are 
authorized again. Only one interrupt can be pending. 
In order to avoid re-entrancy problems in an interrupt code, the designers of the Z80A have 
imposed that a new interrupt cannot occur on the instruction following the EI. 
This was done to allow the RET, RETI, RETN instructions to execute right behind the EI 
instruction, to prevent the stack from overflowing. 
 
A repetitive sequence of the EI instruction will not allow an interrupt to occur before the end of 
that sequence, each EI deferring the interrupt. 
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The Z80A HALT instruction is used to wait for an interrupt to occur by repeating NOP’s of 1 µsec 
indefinitely. If interrupts are not allowed when this instruction is executing, the Z80A will get stuck 
on this instruction. To my knowledge, few games have used the HALT instruction.  
 
However, we can note that the game Trailblazer (published by “Gremlin Graphics” in 1986) stalls 
its “split rasters” with a HALT. Indeed, this instruction is interesting insofar as it makes it possible 
to wedge an interruption to the nearest microsecond. 
 
Indeed, an interrupt cannot cut an instruction (except a repetitive instruction like LDIR or OTIR). 
So, if the instruction is several microseconds long, the interrupt will occur after the instruction 
completes. 

26.4 INTERRUPT MODE 1 
 
Most code written for the "OLD" AMSTRAD CPC uses the Z80A's IM 1 mode. 
We switch to this mode using the IM 1 instruction. 
 
In this mode, when an interrupt occurs, the code is interrupted with an instruction equivalent to 
RST #38. 
 
The address following the interrupted instruction (or the address of the instruction if it is a 
repetitive instruction) is put on the stack and PC=#38. 
 
The Z80A RST #38 instruction lasts 4 µsec when called by code. 
When an interrupt occurs, the call in #38 lasts 5 µsec. 
[ to test it, just compare the time taken by an RST #38 and the time taken by an interrupt with a 
fixed time code on 19968 NOP’s ] 

26.5 INTERRUPT MODE 2 
 
IM 2 mode, also called vectorized mode, is designed to allow several peripherals to generate 
interrupts, via a table of pointers to interrupt routines. 
 
The address of the table is defined, for the most significant address, by the I register of the 
Z80A. The low order byte of the address is normally defined by one of the 128 possible 
peripherals by indicating its number on the 7 most significant bits, bit 0 equalling 0. 
 
On the “OLD” AMSTRAD CPC, the least significant value of the address is undetermined (High 
Impedance value) and can vary from one CPC to another. 
[ I haven't checked if this value can vary while the CPC is on, but the interest in gaining ram is 
moderate and it's something to avoid ] 
 
In the perspective of moving the interrupt address elsewhere than in #38, it is nevertheless 
possible to use this mode with a few precautions: 
 
It is necessary to create an interrupt vector table containing 257 bytes of the same value. 
Indeed, bit 0 of the address of the selected table being unpredictable, this can cause the Z80A to 
read its vector on the 256th and 257th byte of the table. 
 



V1.4 – 01.2023 – Page 272 / 281 
 

If bit 0 is equal to 0, the high and low byte of the vector read from the table will be reversed with 
respect to a vector read from a table where bit 0 is equal to 1. 
It is therefore advisable to create an interrupt vector where the most significant byte of the vector 
is equal to its less significant byte. 
 
Example: Vector table created in #2000, which contains between #2000 and #2100, 257 times 
the #CA value. The interrupt then occurring in #CACA (fart!) 
 
The game "The Great Escape", published by Ocean Software in 1986, used this mode to free up 
the first page of 256 bytes. The vector table starts at #100 (I=1) and occupies 257 bytes with the 
value #BC (for a vector located at #BCBC). 
 
When an interrupt occurs, the call to the pointer located in the table lasts 7 µsec. 

26.6 CRTC & INTERRUPTS... 

26.6.1 GENERAL 
 
A HYSYNC begins when the internal condition C0=R2 is met. 
 
Let us recall once again that on CRTC’s 0, 1 and 2, the HSYNC visually begins approximately 1 
µsec before the display of the corresponding CRTC character. 
 
The display of characters by the GATE ARRAY on these CRTC’s starts again from C0 Disp=R2+R3-
1 (except for R3=0 for CRTC’s 0 and 1). 
 
The measurement of the moment when the interrupt begins is carried out by considering C0vs 
from the VSYNC signal returned by the PPI. 
 
On CRTC’s 3 and 4, the HSYNC begins at the start of the display by the GATE ARRAY of the CRTC 
character corresponding to C0=R2. 
 
As a general rule, an interrupt always starts 1 µsec after the end of the HSYNC regardless of the 
CRTC. 
 
Given that the HSYNC starts 1 µsec earlier than expected on a CPC without ASIC (CRTC’s 0, 1, 2) 
there is therefore a delay of 1 µsec with an interruption on a CPC with ASIC (CRTC’s 3, 4). 
 
With the same programming of R2 and R3, an interrupt occurs 1 µsec later on CRTC’s 3 and 4 
than on the other CRTC’s, because the ASIC manages a HSYNC synchronous with the display. 
 
HSYNC generated by an ASIC is more compliant with display management. 
The following diagrams describe this management according to the CRTC’s. 
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26.6.2 CRTC 0, 1, 2 
 

 

26.6.3 CRTC 0, 1 
 

 

26.6.4 CRTC 2 
 

 

26.6.5 CRTC 3, 4 
 

 
Note :  
Since it is possible to generate "not active" HBLs for the monitor (when R3<=2), this implies the 
possibility of generating interrupts in the visible area. 

  

R3=14 R2

C0 from Vs 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Code interrupted 15 µsec after C0vs=R2

R3

R3=8 R2

C0 from Vs 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 Code interrupted 9 µsec after C0vs=R2

R3

R3=1 R2

C0 from Vs 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 Code interrupted 2 µsec after C0vs=R2

R3

R3=0 R2

C0 from Vs 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

No interruption

R3=0 R2

C0 from Vs 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 Code interrupted 17 µsec after C0vs=R2

R3

R3=14 R2

C0 from Vs 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Code interrupted 16 µsec after C0vs=R2

R3

R3=8 R2

C0 from Vs 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 Code interrupted 10 µsec after C0vs=R2

R3

R3=1 R2

C0 from Vs 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 Code interrupted 3 µsec after C0vs=R2

R3

R3=0 R2

C0 from Vs 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C0 from GA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 Code interrupted 18 µsec after C0vs=R2

R3
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26.6.6 PERSPECTIVE 
 
The diagram below provides a perspective of a scheduled interrupt under the same conditions 
according to the different CRTC’s. 
 
It should provide an understanding of the mechanisms implemented from the reference C0vs 
character, considering the different deadlines implemented by the CRTC’s. 
 
When it comes to compatibility between the CRTC’s, it is therefore necessary to check the 
differences relating to the delays to consider the registers and the effect of certain values, 
particularly if these registers are modified when a HSYNC is in progress. 
 

 

26.7 THREESOME... 

26.7.1 R52 IN TIME ... 
 
As we have seen in the previous Chapters, the GATE ARRAY "requests" an interrupt from the 
Z80A according to different conditions. 
 
It is also responsible for managing its internal R52 counter by resetting it to 0, by incrementing it 
or by wildly eliminating its bit 5. 
The incrementation of R52 depends on the CRTC which signals to the GATE ARRAY the end of the 
HSYNC. 
 
The setting to 0 of bit 5 of R52 depends on the Z80A, which informs the GATE ARRAY that an 
interrupt has occurred. It is after the instruction following the EI of a pending interruption that the 
Gate Array will kill bit 5. 
 
If R52 is 31, and the GATE ARRAY receives an end of HSYNC from the CRTC to increment R52, 
but at the same time it receives the order to eliminate bit 5, what happens? 
The answer is not going to please emulator writers at the NOP. 
 
Depending on the actual execution length of the instruction following the EI instruction, resetting 
bit 5 to 0 may take more or less time. The consequence is that R52 can be incremented before or 
after setting bit 5 to 0. 
 
We can therefore have the following two situations: 

 R52 goes from 31 to 32, then its bit 5 is eliminated, and R52 goes to 0. 

 Bit 5 of R52=31 is eliminated (which has no effect) and R52 changes to 32. 
 
In the first situation, the next interrupt cannot occur before 52 lines. 
In the second situation, the next interrupt cannot occur before 20 lines. 
 

R3=14 R2

C0 from Vs 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

CRTC 0, 1, 2C0 from GA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Code interrupted 15 µsec after C0vs=R2

CRTC 3, 4 C0 from GA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C3: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Code interrupted 16 µsec after C0vs=R2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Concretely, the GATE ARRAY activates the INT signal to indicate to the Z80A its interrupt request, 
which accepts it according to the state of an internal flag of the Z80 set by EI/DI (this flag is 
called IFF1, for "Interrupt Flip-Flop No. 1”). 
 
If the interrupt is accepted, the Z80A activates the IORQ and M1 signals, also connected to the 
GATE ARRAY. 
Note that the end of the M1 signal during an interrupt occurs after the TWait cycles of the Z80A, 
in other words after the execution of the instruction following the EI. 

26.7.2 RELIABILITY OF INTERRUPTIONS 
 
The Gate Array is clocked at 16 MHz, and he is the conductor of the other circuits of the machine. 
It notably cadences the Z80A at 4 MHz. 
 
The Gate Array manages certain signals from the CRTC, including its HSYNC signal. When the 
state of this signal changes, it allows the Gate Array to manage its R52 counter in order to 
position the INT signal of the Z80A when R52 has reached its limit. This treatment is a priori 
carried out on the first cycles of treatment of the Gate Array. 
 
If the interruptions are authorized and the Int signal is activated, the Z80A will deal with an 
interruption after the end of the investigation. 
 
Unfortunately, CRTCs are not reliable concerning the management of their HSYNC 
signal. In particular, the CRTC 1 for which disparities exist between models of the same type and 
different types. Thus, with equivalent programming, the end of the HSYNC signal can occur more 
or less late on a 1/16th MHZ scale. Even if the CRTC bus is 1 MHz, direct programming of 
registers or internal processing of signals is not necessarily aligned with this frequency. 
 
As a reminder, the Gate Array also positions the Wait signal of the Z80A for ¾ of its frequency 
(e.g. 12/16 MHz) and constraints the Z80A to add waiting cycles on the cycles provided for this 
within the M Cycles of the Z80A instructions directory. The Z80A is "free" of the motif imposed by 
the Gate Array for only 4/16th of MHz (0.25 µsec, 1 cycle T). This motif causes a time stretching 
of the instructions. (See Chapter 4.4.2). 
  
If the CRTC activates the end of HSYNC during the last cycle T of an instruction (0.25 µsec), the 
delay is very short to allow the Gate Array to activate the INT signal early so that the Z80A 
consider it. If the end of HSYNC arrives too late, then the Z80A is not warned in time, and the 
interruption does not take place. According to the CRTC, the Z80A can therefore generate 
additional instruction before generating its interruption. 
 
The timing logic of the Gate Array to align the cycles of the Z80A instructions allows for the 
avoidance of the consequences of these discordant HSYNC ends for certain instructions whose 
first cycles of the Gate Array are not on the last cycle T of the instruction of Z80A. 
 
This is the case with NOP instruction (and by extension of its official supplier, HALT instruction). 
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The end of HSYNC occurs before or on the first cycle of 1/16 MHz which begins under T3: 
 

T (µsec) 0 0,25 0,50 0,75 1 1,25 1,50 1,75 2 2,25 2,50 …

Z80A Instruction NOP NOP INTERRUPTION …

Z80A Instr. Tcycle T1 T2* T3 T4 T1 T2* T3 T4 T1 T2 T3 …

GA Wait Management Wait Wait NoWait Wait Wait Wait NoWait Wait Wait Wait NoWait Wait …

GA 16Mhz 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 …

GA Period Number 3326 3327 3328 3329 …

INT Signal by GA X …

Z80A INT Signal X X X X X X X X …

HSYNC X=HSYNC END X INTERRUPTION …

 
The Gate Array was on its last cycle before the end of HSYNC.  
With R0 = 63, 64 µsec x 52 lines = 3328 cycles have passed since the last end of HSYNC. 
 
The INT signal of the Z80A is positioned at T3 level and an interruption will take place at the end 
of the NOP. 
 
The end of HSYNC occurs after the first cycles of 1/16 MHz which begins under T3: 
 

T (µsec) 0 0,25 0,50 0,75 1 1,25 1,50 1,75 2 2,25 2,50 …

Z80A Instruction NOP NOP INTERRUPTION …

Z80A Instr Tcycle T1 T2* T3 T4 T1 T2* T3 T4 T1 T2 T3 …

GA Wait Management Wait Wait NoWait Wait Wait Wait NoWait Wait Wait Wait NoWait Wait …

GA 16Mhz 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 …

GA Period Number 3326 3327 3328 3329 …

INT Signal by GA  X X …

Z80A INT Signal  X X X X …

HSYNC X=HSYNC END  X X INTERRUPTION …

 
The end of the HSYNC arrived too late. The GA has processed the signal, but the Z80A will be 
informed about this at T4 cycle. The interruption will still occur at the end of the NOP instruction. 
 
Unfortunately, there are many instructions whose last cycle T is positioned in front of the first 
cycles of the Gate Array. A simple delay of some 1/16th of MHz is then enough to scuttle an 
interruption. 
 
Example with two consecutives ADD HL,DE instructions: 
The end of HSYNC occurs before or on the first cycle of 1/16 MHz which begins under T3: 
 

T (µsec) 0 0,25 0,50 0,75 1 1,25 1,50 1,75 2 2,25 2,50 2,75 3 3,25 3,50 …

Z80A Instruction ADD HL,DE INTERRUPTION …

Z80A Instr Tcycle T1 T2* Tw T3 T4 T1 T2 T3 T4 T1 T2 T3 T1 T2 T3 …

GA Wait Wait Wait NoWait Wait Wait Wait NoWait Wait Wait Wait NoWait Wait Wait Wait Wait NoWait …

GA 16Mhz 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

GA Period Number 3325 3326 3327 3328 …

INT Signal by GA X …

Z80A INT Signal X X X X …

HSYNC X=HSYNC END X X INTERRUPTION …

 
The Gate Array had time to consider the end of HSYNC to activate the INT signal of the Z80A, 
considered at the start of T3 cycle. The Z80A “knows” that it will have to generate an interruption 
and not to read the next instruction. 
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The end of HSYNC occurs after the first cycles of 1/16 MHz which begins under T3: 
 

T (µsec) 0 0,25 0,50 0,75 1 1,25 1,50 1,75 2 2,25 2,50 2,75 3 3,25 3,50 …

Z80A Instruction ADD HL,DE ADD HL,DE …

Z80A Instr Tcycle T1 T2* Tw T3 T4 T1 T2 T3 T4 T1 T2 T3 T1 T2* Tw …

GA Wait Wait Wait NoWait Wait Wait Wait NoWait Wait Wait Wait NoWait Wait Wait Wait Wait NoWait …

GA 16Mhz 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

GA Period Number 3325 3326 3327 3328 …

INT Signal by GA X X …

Z80A INT Signal X X X X X X X X X X X X …

HSYNC X=HSYNC END X X

 
The Gate Array did not have time to consider the end of HSYNC so that the INT signal is 
transmitted to the Z80A in T3. Then, the Z80A will not be able to consider this signal and it will 
deal with the following instruction and will generate its interruption after this 2nd instruction. 
 
An instruction like set n,(ix+n’) officially lasts 23 cycles-T without being stretched. On CPC the 
alignment caused by the Gate Array lengthens this instruction to 27 or 28 cycles-T. 
If an interruption is missed, it will then occur 7 µsec later according to the CRTC. 
 
No difference’s were noted between different CRTC type 0’s, which led to this model being used 
as a benchmark. The CRTC’s 2, 3 and 4 generally give results identical to the CRTC 0, with a few 
small differences. 
 
The CRTC 1 has significant differences, even between different types 1. 
In a 464, for example, it can behave like a CRTC 0. 
 
The Gate Array 40008 can here have an impact here since this is an exchange problem between 
three circuits and that there are differences in the order of 1/16MHz between certain models of 
Gate Array. 
 
However, tests were carried out on 6128 Multi-CRTC, which demonstrate these differences from 
the Gate Array 40010, also observed on unmodified machines. 
 
In conclusion, it is risky to rely on the temporal position of an interrupt as it can occur at the very 
end of an instruction. 
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27 CRTC IDENTIFICATION 
 
There are a plethora of methods for identifying a CRTC, most with code, others only visually. 
 
Some methods sometimes involve frame desynchronization on the screen and are therefore less 
well regarded by some purists. 
 
It is also possible to identify a CRTC by being able to identify the machine, as is the case with the 
CPC+, which has management differences in other circuits (and which have extended functions). 

27.1.1 VIA C4 AND/OR C9 OVERFLOW 
It is possible to overflow C4 in many different situations depending on the CRTC, whether by 
programming R0, R9, R4, R7 or even R8. 
In general, on CRTC 0, for example, C4 is incremented by default. 
In additional management, the value of C4 exceeds the value programmed in R4. 
On a CRTC 0, this overrun will occur once. 
On CRTC’s 1 or 2, this overrun will take place several times depending on the content of R9 and 
R5. 
On CRTC’s 3 or 4, there will be no overtaking. 
If C4 reaches R7, then a VSYNC may occur. 
 
Example : Frame of 312 lines with R4=36, R9=7, R5=16 
312=((36+1)x(7+1))+16 
On a CRTC 3 or 4, if R7>36, then the VSYNC does not occur anymore. 
On a CRTC 0, if R7>37, then the VSYNC does not occur anymore. 
On a CRTC 1 or 2, if R7>39, then the VSYNC does not occur anymore. 

27.1.2 VIA VSYNC MANAGEMENT DURING HSYNC 
On a CRTC 2, setting R2 and R3 so that VSYNC occurs during the HSYNC period “turns off” VSYNC 
for the remainder of the C4=R7 period. 
It is therefore sufficient to place R2+R3 so that it exceeds the value of R0 

27.1.3 VIA CONSIDERATION OF VSYNC ACTIVATION 
When the VSYNC is triggered by positioning R7 with C4, when C0>0, the line counter of the 
VSYNC is different according to the CRTC’s. It starts from 0 on a CRTC 0, and from 1 on a CRTC 
1, while no VSYNC occurs in this condition on a CRTC’s 3 or 4. 

27.1.4 VIA VSYNC LENGTH 
Only CRTC’s 0, 3 and 4 can manage the length of the VSYNC. 
A VSYNC on CRTC’s 1 and 2, which starts when R7 was programmed before C4=R7, lasts 16 lines. 

27.1.5 VIA HSYNC LENGTH 
On CRTC’s 2, 3 and 4, the HSYNC lasts 16 µsec when R3=0. 
On CRTC’s 0 and 1, there is no HSYNC when R3=0. 
There is therefore no interruption, which is one of the methods for testing the consequences of 
the value 0 on R3. 
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27.1.6 VIA THE BORDER, VISUALY 

 CRTC 2 whose C0=0 during the HSYNC can no longer deactivate its BORDER. 
 CRTC’s 0 and 2, of which R6=0 is in conflict when C4=C9=0, alternates background and 

BORDER bytes (at least on the first line without adequate programming). 

 CRTC’s 0 and 2 will create a BORDER byte when C0 reaches R0 (and R1>R0). 
 CRTC’s 0, 3 and 4 can deactivate the BORDER (or add delays on considering the 

BORDER) with the SKEW BIT function of R8, whereas this function does not exist on 
CRTC’s 1 and 2. 

27.1.7 VIA THE INTERLACE MODE 
C4 counting methods are different depending on the CRTC. 
On CRTC 2, the count of C4 is not affected. 
Being the only one, it is therefore detectable once the others have been identified. 
On CRTC’s 0 and 1, with R9 programmed respectively with 6 and 7 without having modified R7, 
the VSYNC occurs 2 times faster, since C4=R7 with characters of 4 lines instead of 8. 

27.1.8 VIA STATUS REGISTER &BE00 
Only on CRTC 1, is it possible to test the transition of bit 6 at the appropriate time. 
On CRTC’s 3 and 4, the port at &BE00 behaves like the one at &BF00 (see below) 

27.1.9 VIA READ REGISTER &BF00 
On CRTC 0, it is possible to read R12 and R13, as well as R14/R15 (cursor) and R15/R17 (light 
pen). The register number value is truncated to 5 bits. Thus, selecting register 108 is equivalent to 
selecting register 12. 
On CRTC 1, this register returns 0 on all registers, except for register 31 (and all registers whose 
bits 0 to 4 are at 1). Values 255 and 127 were observed. 
On CRTC 2, this register is used to read registers R16 and R17. The value 0 is returned on all 
other register numbers. The register number value is truncated to 5 bits. 
On CRTC’s 3 and 4, it is possible to read registers R16, R17, R10, R11, R12 and R13. The register 
number read comes from a table of 8 registers on 3 bits (see Chapter 20.3.4). Reading R4 or R20 
is equivalent to reading R12. 
On CRTC’s 3 and 4, reading R10 and R11 (or equivalent for the first 3 bits) returns values internal 
to the ASIC (see Chapter 21.3.4). 

27.1.10 VIA R10/R11 STATUS REGISTERS  
Only on CRTC’s 3 and 4, it is possible to test the update of many bits at the appropriate time, 
such as for example bit 0 of status 1 which is worth 1 when C0=R0 (0 otherwise). Furthermore 
(and subject to additional tests), bit 3 of status 2 should allow to differentiate between CRTC 3 
and CRTC 4. 
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28 CPC IDENTIFICATION 
 
It is possible to identify CPC models from differences which are not related to the CRTC or ROM 
content. 
This is the case for the 2 machines which have ASIC’s: 
CPC PLUS   ASIC 40489 CRTC 3   
CPC LOWCOST  ASIC 40226 CRTC 4 

28.1 IDENTIFICATION METHODS 

28.1.1 ENABLING EXTENDED FEATURES 
CPC PLUS   : Activation via an unlock sequence sent to the CRTC. 
CPC LOWCOST : No extended functions (without the secret sequence). 
OTHER CPCS  : No extended functions. 

28.1.2 BUG PPI PORT C 
CPC PLUS  : When the command register is used to configure port C, the bits of this port are 
reset to 0. The ASIC poorly emulates the PPI and does not reset these bits to 0. Very annoying for 
the compatibility of keyboard routines between the CPC PLUS and older models. 
CPC LOWCOST:  The 8255 PPI is not emulated by the 40226 ASIC. These CPC’s have a PPI and 
therefore behave like the first generation of CPC’s.  
OTHER CPCS: Port C bits are normally zeroed by the command register. 

28.1.3 BUG PPI PORT B 
On a PPI, you can program the direction of port B (input or output). 
At the output, we can therefore place a value there, which we can read again. 
 
The PPI of CPC LOWCOST would not make it possible to read back a value stored in the port B 
placed in output. We therefore systematically read the value of port B as input (and therefore the 
peripherals connected to it). This remains to be verified however, failing to indicate which PPIs 
were installed in the test CPC’s. 
 
AMSTRAD used, as per the case for CRTC’s, 8255 PPIs from several different manufacturers. 
We can count the following circuits, used in all models without distinction (464, 664, 6128) 

 NEC D8255AC-2 

 NEC D8255AC-5 
 TOSHIBA TMP8255AP-5 

Note that the difference between "-2" and "-5" is due to the maximum frequency manageable by 
the circuit (4 MHz for the "-5" and 5 MHz for the "-2") 
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Raaahhhhhhhhh !! 
Idiot Canadian Cat Curious in front of a CPC 
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